
Piotr Karwatka
Mariusz Gil
Mike Grabowski
Aleksander Graf
Paweł Jedrzejewski
Michał Kurzeja
Antoni Orfin
Bartosz Picho

Microservices
Architecture
for eCommerce

2Go to Table of Contents

Microservices Architecture
for eCommerce

Name a technology conference or meetup and I’ll tell you about the

constant speeches referencing microservices. This modern engineering

technique has grown from good old SOA (Service Oriented Architecture)

with features like REST (vs. old SOAP) support, NoSQL databases and the

Event driven/reactive approach sprinkled in.

Why have they become so important? Roughly speaking, because of what

scale systems achieve nowadays and the number of changes that are

deployed on a daily basis.

Of course microservices aren’t a panacea. I’ve tried to make this book as

informational and candid as I can. Although we promote the

microservices architecture across the following chapters, please also take

a look at Appendix 1 authored by Spryker’s Co-Founder Alexander Graf

with a very candid and pragmatic view on this topic.

This book is a rather “technical one” - starting with some Business

rationale for microservices and then stepping into the engineers’

shoes and trying to show you the tools and techniques required to

build and scale modern eCommerce systems.

Foreword

3Go to Table of Contents

Microservices Architecture
for eCommerce

Name a technology conference or meetup and I’ll tell you about the

constant speeches referencing microservices. This modern engineering

technique has grown from good old SOA (Service Oriented Architecture)

with features like REST (vs. old SOAP) support, NoSQL databases and the

Event driven/reactive approach sprinkled in.

Why have they become so important? Roughly speaking, because of what

scale systems achieve nowadays and the number of changes that are

deployed on a daily basis.

Of course microservices aren’t a panacea. I’ve tried to make this book as

informational and candid as I can. Although we promote the

microservices architecture across the following chapters, please also take

a look at Appendix 1 authored by Spryker’s Co-Founder Alexander Graf

with a very candid and pragmatic view on this topic.

This book is a rather “technical one” - starting with some Business

rationale for microservices and then stepping into the engineers’

shoes and trying to show you the tools and techniques required to

build and scale modern eCommerce systems.

Foreword

The key advantages of the microservice approach are:

• Faster Time to Market - because of the decentralized development

process and opportunities to innovate given to each separate

development team.

• Less is more - the microservices approach leverages the Single

Responsibility Principle which means that a single microservice

performs exactly one business function. Therefore developers can

create more efficient, clear and testable code.

• Domain Expertise - business features are granularly split into separate

micro-applications. You’ll have separate services for promotions,

checkout and products catalog. Each development team typically

includes business analysts and developers. It builds engagement and

speeds up development.

• Accountability - Booking.com’s approach to development is to

promote the teams whose features are published for production (before

the features are usually proven to increase conversion). By working on

Divide and conquer

The original Zalando site was built on Magento using PHP, and at one

time was the biggest Magento site in the world. The German eCommerce

giant that employs over 10,000 people and ships more than 1,500 fashion

brands to customers in 15 European countries generated $3.43 billion in

revenue last year. With over 700 people on its engineering team, they

moved to microservices in 18 months.

4Go to Table of Contents

Change is too slow

It’s something I usually hear when starting a new consulting engagement.

After a few years in the market, enterprises tend to keep the status quo,

and try to keep everything running smoothly, but nowadays it’s not

sufficient to become a market leader. It’s crucial to experiment, change,

test and select the best solutions. But it’s extremely hard to work like that

with a team of a few dozen engineers and extremely sophisticated

business rules coded to the metal by thousands of lines of code. The

microservics approach became so popular because it breaks this into

smaller, self-sufficient and granular areas of responsibility that are easy to

test and deploy.

Organizations which design systems ... are constrained to
produce designs which are copies of the communication
structures of these organizations.

— M. CONWAY

In eCommerce: your software is your company

the basis of microservices you’ll have separate teams accountable for

particular KPIs, providing SLA’s for their parts, etc. A side effect of this

approach is usually the rise of employee effectiveness and engagement.

• Easier outsourcing - because services are separable and usually

contracts between them have to be well documented, it’s rather easy to

use ready-made products or outsource particular services to other

companies.

5Go to Table of Contents

Change is too slow

It’s something I usually hear when starting a new consulting engagement.

After a few years in the market, enterprises tend to keep the status quo,

and try to keep everything running smoothly, but nowadays it’s not

sufficient to become a market leader. It’s crucial to experiment, change,

test and select the best solutions. But it’s extremely hard to work like that

with a team of a few dozen engineers and extremely sophisticated

business rules coded to the metal by thousands of lines of code. The

microservics approach became so popular because it breaks this into

smaller, self-sufficient and granular areas of responsibility that are easy to

test and deploy.

Organizations which design systems ... are constrained to
produce designs which are copies of the communication
structures of these organizations.

— M. CONWAY

In eCommerce: your software is your company

the basis of microservices you’ll have separate teams accountable for

particular KPIs, providing SLA’s for their parts, etc. A side effect of this

approach is usually the rise of employee effectiveness and engagement.

• Easier outsourcing - because services are separable and usually

contracts between them have to be well documented, it’s rather easy to

use ready-made products or outsource particular services to other

companies.

Among all the technical challenges, microservices usually require

organizational changes inside the company. Breaking the technical

monolith quite often goes hand in hand with dividing enterprise

departments into agile, rapid teams to achieve faster results. In the end,

the final outcome is that processes that took a few months can now be

executed in weeks and everybody feels engaged. It’s something you

cannot underestimate.

Omnichannel

To fulfill your customer’s expectations about omnichannel, you have to

integrate each and every piece of information about products, shipments,

stocks and orders, and keep it up to datefresh. There is no single system

to deal with POS applications, ERP, WMS and eCommerce

responsibilities. Of course, I’ve seen a few that pretend to be a One-stop

solution but I’ve never seen anything like that in production. The key is to

integrate systems that are optimal for their niches and already integrated

within your existing processes. Microservices are great for such an

evolutionary approach. We’ll describe a case study - where by exposing

the APIs from PIM, CRM, ERP and creating a dedicated UI facade, we

leveraged on this approach to provide a sophisticated B2B solution.

This eBook will try to help you decide if it is time for applying this

approach and how to start by referencing to few popular techniques

and tools worth following.

 Let’s get started!

Piotr Karwatka, CTO at Divante

6Go to Table of Contents

About the authors

https://accesto.com/

7Go to Table of Contents

About the authors

Piotr Karwatka

CTO at Divante. My biggest project? Building the company from 1 ->

150+ (still growing), taking care of software productions, technology

development and operations/processes. 10+ years of professional

Software Engineering and Project Management experience. I've also tried

my hand at writing, with the book "E-Commerce technology for

managers". My career started as a software developer and co-creator of

about 30 commercial desktop and web applications.

Michał Kurzeja

CTO and Co-Founder of Accesto with over 8 years of experience in

leading technical projects. Certified Symfony 3 developer. Passionate

about new technologies; mentors engineers and teams in developing

high-quality software. Co-orgaizer of Wrocław Symfony Group meetups.

Mariusz Gil

Software Architect and Consultant, focused on high value and high

complexity, scalable web applications with 17+ years of experience in the

IT industry. Helps teams and organizations adopt good development and

programming practices. International conference speaker and developer

events organizer.

Bartosz Picho

eCommerce Solution Architect, responsible for Magento 2 technology at

Divante. Specialized in application development end 2 end: from

business requirements to system architectures, meeting high

performance and scalability expectations. Passionate technologist,

experienced in Magento 1 and 2, both Community and Enterprise

editions.

http://divante.co
https://accesto.com/

8Go to Table of Contents

Antoni Orfin

Solutions Architect specialized in designing highly-scalable web

applications and introducing best practices into the software

development process. Speaker at several IT conferences. Currently

responsible for systems architecture and driving DevOps methodology at

Droplr.com.

Mike Grabowski

Software Developer and open source enthusiast. Core contributor to

many popular libraries, including React Native, React Navigation and

Haul. Currently CTO at Callstack.io. Travels the world teaching

developers how to use React and shares his experience at various

React-related events.

Paweł Jędrzejewski

Founder and Lead Developer of Sylius, the first Open Source eCommerce

framework. Currently busy building the business & ecosystem around the

project while also speaking at international tech conferences about

eCommerce & APIs.

Alexander Graf

Co-Founder and CEO of Spryker Systems. Alexander Graf (*1980) is one

of Germany’s leading eCommerce experts and a digital entrepreneur of

more than a decade’s standing. His widely-read blog Kassenzone (“The

Check-Out Area”) has kicked off many a debate among commerce

professionals. Alexander wrote Appendix 1 to this book.

https://callstack.io
https://droplr.com/
http://sylius.org/
https://spryker.com/

9

Antoni Orfin

Solutions Architect specialized in designing highly-scalable web

applications and introducing best practices into the software

development process. Speaker at several IT conferences. Currently

responsible for systems architecture and driving DevOps methodology at

Droplr.com.

Mike Grabowski

Software Developer and open source enthusiast. Core contributor to

many popular libraries, including React Native, React Navigation and

Haul. Currently CTO at Callstack.io. Travels the world teaching

developers how to use React and shares his experience at various

React-related events.

Paweł Jędrzejewski

Founder and Lead Developer of Sylius, the first Open Source eCommerce

framework. Currently busy building the business & ecosystem around the

project while also speaking at international tech conferences about

eCommerce & APIs.

Alexander Graf

Co-Founder and CEO of Spryker Systems. Alexander Graf (*1980) is one

of Germany’s leading eCommerce experts and a digital entrepreneur of

more than a decade’s standing. His widely-read blog Kassenzone (“The

Check-Out Area”) has kicked off many a debate among commerce

professionals. Alexander wrote Appendix 1 to this book.

I believe in open source. This book was intended to be as open as

possible. I would like to thank all the enthusiasts engaged in this project -

giving me honest feedback, helping with editorials etc.

Mateusz Gromulski, Will Jarvis, Ian Cassidy, Jacek Lampart, Agata

Młodawska, Tomasz Anioł, Tomasz Karwatka, Cezary Olejarczyk

Thank you guys!

Aknowledgement

10Go to Table of Contents

Table of contents

Foreword

 Divide and conquer

 Change is too slow

 In e-Commerce: your software is your company

 Omnichannel

About the authors

Table of contents

Microservices

 The criticism

Evolutionary approach

Best practices

 Create a Separate Database for Each Service

 Rely on contracts between services

 Deploy in Containers

 Treat Servers as Volatile

Related techniques and patterns

 Design patterns

 Integration techniques

 Deployment of microservices

 Serverless - Function as a Service

 Continuous Deployment

Related technologies

 Microservices based e-commerce platforms

 Technologies that empower microservices achitecture

 Distributed logging and monitoring

Case Studies: Re-architecting the monolith

 B2B

 Mobile Commerce

Blogs and resources

2
3

4

4

5

6

10

11

14

16

21

22

24

24

25

27

30

39

50

60

69

72

73

77

91

98

99

110

112

11Go to Table of Contents

Microservices

Table of contents

12Go to Table of Contents

Microservices

Microservice architecture structures the application as a set of loosely

coupled, collaborating services. Each service implements a set of related

functions. For example, an application might consist of services such as an

order management service, an inventory management service, etc.

Services communicate using protocols such as HTTP/REST or (a less

popular approach) using an asynchronous approach like AMQP. Services

can be developed as separate applications and deployed independently.

Data consistency is maintained using an event-driven architecture

because each service should have its own database in order to be

decoupled from other services.

The most common forces dictating the Microservice approach¹:

• Multiple teams of developers working on a single application.

• System must be easy to understand and maintain/modify, no matter the

 number of changes deployed.

• Urgency for new team members to be productive.

• Need for continuous deployment (although possible to achieve with

 monolith design, microservices include some features of DevOps

 approach by design).

• Scalability requirements that require running your application across

 server clusters.

• Desire to adopt emerging technologies (new programming languages,

 etc.) without major risks.

¹ According to: http://microservices.io/patterns/microservices.html

http://microservices.io/patterns/microservices.html

13Go to Table of Contents

Microservices

Microservice architecture structures the application as a set of loosely

coupled, collaborating services. Each service implements a set of related

functions. For example, an application might consist of services such as an

order management service, an inventory management service, etc.

Services communicate using protocols such as HTTP/REST or (a less

popular approach) using an asynchronous approach like AMQP. Services

can be developed as separate applications and deployed independently.

Data consistency is maintained using an event-driven architecture

because each service should have its own database in order to be

decoupled from other services.

The most common forces dictating the Microservice approach¹:

• Multiple teams of developers working on a single application.

• System must be easy to understand and maintain/modify, no matter the

 number of changes deployed.

• Urgency for new team members to be productive.

• Need for continuous deployment (although possible to achieve with

 monolith design, microservices include some features of DevOps

 approach by design).

• Scalability requirements that require running your application across

 server clusters.

• Desire to adopt emerging technologies (new programming languages,

 etc.) without major risks.

¹ According to: http://microservices.io/patterns/microservices.html

The assumptions of the orthogonal architecture followed by

microservices architects implies the following benefits:

• Each microservice could be deployed separately and without shutting

 down the whole system.

• Each microservice can be developed using different technologies while

 allowing them to publish HTTP end-points (Golang based services can

 interoperate with PHP, Java…).

• By defining strict protocols (API), services are easy to test and extend

 into the future.

• Microservices can be easily hosted in the cloud, Docker environments,

 or any other server platform, and can be very easily scaled as each

 service can live on its own server(s), VPS(es) etc.

• The services are easy to replace.

• Services are organized around capabilities, e.g., UI, front-end,

 recommendation, logistics, billing, etc.

The scalability and deployment processes of microservice-based systems

can be much easier to automate compared to monolithic architectures.

The DevOps approach to infrastructure along with Cloud services is

commonly in use. The examples of Spotify and Netflix² inspire IT

engineers to implement continuous delivery and monitoring.

² https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/

14Go to Table of Contents

Dockerization of IT environments, monitoring tools and DevOps tools

(Ansible, Chef, Puppet and others) can take your development team to

the the next level of effectiveness.

Fig. 1: A microservice approach encourages enterprises to become more agile, with

cross-functional teams responsible for each service. Implementing such a company

structure, as in Spotify or Netflix, can allow you to adopt and test new ideas quickly, and

build strong ownership feelings across the teams.

Operations

A B

Core Team

Cross-functional teamQuality assurance

Development
Cross-functional team

Cross-functional team

Cross-functional team

Cross-functional team

Cross-functional team

The criticism

The microservice approach is subject to criticism for a number of

issues:

15Go to Table of Contents

Dockerization of IT environments, monitoring tools and DevOps tools

(Ansible, Chef, Puppet and others) can take your development team to

the the next level of effectiveness.

Fig. 1: A microservice approach encourages enterprises to become more agile, with

cross-functional teams responsible for each service. Implementing such a company

structure, as in Spotify or Netflix, can allow you to adopt and test new ideas quickly, and

build strong ownership feelings across the teams.

Operations

A B

Core Team

Cross-functional teamQuality assurance

Development
Cross-functional team

Cross-functional team

Cross-functional team

Cross-functional team

Cross-functional team

The criticism

The microservice approach is subject to criticism for a number of

issues:

• The architecture introduces additional complexity and new problems

 to deal with, such as network latency, message formats, load

 balancing, fault tolerance and monitoring. Ignoring one of these

 belongs to the "fallacies of distributed computing”.

• Automation is possible but in the simplest cases, tests and deployments

 may be more complicated than with the monolithic approach.

• Moving responsibilities between services is difficult. It may involve

 communication between different teams, rewriting the functionality in

 another language or fitting it into a different infrastructure. On the other

 hand, it’s easy to test contracts between services after such changes.

• Starting with the microservices approach from the beginning can lead to

 too many services, whereas the alternative of internal modularization

 may lead to a simpler design.

16Go to Table of Contents

Evolutionary
approach

17

Evolutionary
approach

Martin Fowler, one of the pioneers³ of microservices used to say:

Almost all the successful microservice stories have started with
a monolith that got too big and was broken up.

Almost all the cases where I've heard of a system that was built
as a microservice system from scratch, has ended up in
serious trouble.

Evolutionary approach

³ https://martinfowler.com/articles/microservices.html

18Go to Table of Contents

Fig. 2: Initial, monolithic architecture began after 4 years of development of a

large-scale, 100M EUR/yr B2B platform.

When you begin a new application, how sure are you that it will be useful

to your users? Starting with microservices from day one may significantly

complicate the system. It can be much harder to pivot if something didn’t

go as planned (from the business standpoint). During this first phase you

need to prioritize the speed of development to basically figure out what

works.

ERP

ESB

CRM PIM

External Systems

Magento

WMS

...

19Go to Table of Contents

Fig. 2: Initial, monolithic architecture began after 4 years of development of a

large-scale, 100M EUR/yr B2B platform.

When you begin a new application, how sure are you that it will be useful

to your users? Starting with microservices from day one may significantly

complicate the system. It can be much harder to pivot if something didn’t

go as planned (from the business standpoint). During this first phase you

need to prioritize the speed of development to basically figure out what

works.

ERP

ESB

CRM PIM

External Systems

Magento

WMS

...

Fig. 3: The very same system but after architecture re-engineering; now the system core

is built upon 10 microservices.

Many successful eCommerce businesses (if not all of them!) started from

monolithic, at some point, all-in-one platforms before transitioning into a

service oriented architecture.

Re-engineering the architecture requires a team effort of 6-12 months (18

months in Zalando’s case) - and therefore it should have a solid business

foundation.

Frontend Application Mobile App

Micro Services

M
es

sa
ge

 B
ro

ke
r

PRICE

WMS

PIM

REPORT

CRM

NOTIFY RECOMMENDATION

REVIEW

...

OMS

ERP ...

XYZ Client

API Consumers

External Systems

API Gateway

20Go to Table of Contents

The most common reasons we’ve seen to initialize a transformation

are the following:

• With four to five years of development, the scope of the system is so

 broad that implementing changes in one of the modules affects other

 areas and despite having unit-tests, making deep changes to the

 system logic is quite risky.

• Technical debt in one system area is accrued to a level at which it’s

 extremely hard to resolve without major changes. Performance

 challenges exist in the product catalog, pricing/promo rules or central

 user database areas.

• There is a need to coordinate separate teams or vendors in a way

 which leads to minimal interference between them.

• The system is hard to test and deploy.

• There is a need to implement continuous deployments.

21Go to Table of Contents

The most common reasons we’ve seen to initialize a transformation

are the following:

• With four to five years of development, the scope of the system is so

 broad that implementing changes in one of the modules affects other

 areas and despite having unit-tests, making deep changes to the

 system logic is quite risky.

• Technical debt in one system area is accrued to a level at which it’s

 extremely hard to resolve without major changes. Performance

 challenges exist in the product catalog, pricing/promo rules or central

 user database areas.

• There is a need to coordinate separate teams or vendors in a way

 which leads to minimal interference between them.

• The system is hard to test and deploy.

• There is a need to implement continuous deployments.

Best practices

22Go to Table of Contents

Best practices

Create a Separate Database for Each Service

Sharing the same data structures between services can be difficult -

particularly in environments where separate teams manage each

microservice. Conflicts and surprising changes are not what you’re aiming

for with a distributed approach.

Breaking apart the data can make information management more

complicated the individual storage systems can easily de-sync or become

inconsistent. You need to add a tool that performs master data

management. While operating in the background, it must eventually find

and fix inconsistencies. One of the patterns for such synchronization is

Event Sourcing. This pattern can help you with such situations by

providing you with a reliable history log of all data changes that can be

rolled back and forth. Eventual Consistency and CAP theorem are

fundamentals that must be considered during the design phase.

This eBook is intended to show you the most popular design patterns and

practices related to microservices. I strongly recommend you to track the

father of the micro services approach - Sam Newman. You should check

out websites like: http://microservices.io, https://dzone.com/ and

https://github.com/mfornos/awesome-microservices

(under the “microservices” keyword). They provide a condensed dose of

knowledge about core microservice patterns, decomposition methods,

deployment patterns, communication styles, data management and

much more…

23Go to Table of Contents

Best practices

Create a Separate Database for Each Service

Sharing the same data structures between services can be difficult -

particularly in environments where separate teams manage each

microservice. Conflicts and surprising changes are not what you’re aiming

for with a distributed approach.

Breaking apart the data can make information management more

complicated the individual storage systems can easily de-sync or become

inconsistent. You need to add a tool that performs master data

management. While operating in the background, it must eventually find

and fix inconsistencies. One of the patterns for such synchronization is

Event Sourcing. This pattern can help you with such situations by

providing you with a reliable history log of all data changes that can be

rolled back and forth. Eventual Consistency and CAP theorem are

fundamentals that must be considered during the design phase.

This eBook is intended to show you the most popular design patterns and

practices related to microservices. I strongly recommend you to track the

father of the micro services approach - Sam Newman. You should check

out websites like: http://microservices.io, https://dzone.com/ and

https://github.com/mfornos/awesome-microservices

(under the “microservices” keyword). They provide a condensed dose of

knowledge about core microservice patterns, decomposition methods,

deployment patterns, communication styles, data management and

much more…

Fig. 4: Each microservice should have a separate database and be as self-sufficient as it

can. From a design point of view - it’s the simplest way to avoid conflicts. Remember -

different teams are working on different parts of the application. Having a common

database is like having a single point of failure with all conflicting changes deployed

simultaneously between services.

MICROSERVICES APPROACH

Presentation services

Stateful services

Statles services with related databases

MODEL/DATABASE PER MICROSERVICE

UI

TRADITIONAL APPLICATION

● Single app process or 3-Tier
 approach

● Several modules
● Layered modules

Single App Process

OR

3-Tier Approach

SINGLE MONOLITH DATABASE

24Go to Table of Contents

Rely on Contracts Between Services

Deploy in Containers

Deploying microservices in containers is important because it means you

need just one tool to deploy everything. As long as the microservice is in

a container, the tool knows how to deploy it. It doesn’t matter what the

container is. That said, Docker seems to have become the de facto

standard for containers very quickly.

Keep all code at a similar level of maturity and stability. When you have to

modify the behaviour of a currently deployed (and stable) microservice,

it’s usually better to put the new logic into a new, separate service. It’s

sometimes called “immutable architecture”.

Another point here is that you should maintain similar, specific

requirements for all microservices like data formats, enumerating return

values and describing error handling.

Microservices should comply with SRP (Single Responsibility Principle)

and LSP (Liskov Substitution Principle).

25Go to Table of Contents

Rely on Contracts Between Services

Deploy in Containers

Deploying microservices in containers is important because it means you

need just one tool to deploy everything. As long as the microservice is in

a container, the tool knows how to deploy it. It doesn’t matter what the

container is. That said, Docker seems to have become the de facto

standard for containers very quickly.

Keep all code at a similar level of maturity and stability. When you have to

modify the behaviour of a currently deployed (and stable) microservice,

it’s usually better to put the new logic into a new, separate service. It’s

sometimes called “immutable architecture”.

Another point here is that you should maintain similar, specific

requirements for all microservices like data formats, enumerating return

values and describing error handling.

Microservices should comply with SRP (Single Responsibility Principle)

and LSP (Liskov Substitution Principle).

Fig. 5: Source - Docker Blog. Docker Swarm manages the whole server cluster -

automatically deploying new machines with additional instances for scalability and high

availability. Of course it can be deployed on popular cloud environments like Amazon.

Treat Servers as Volatile

Treat servers, particularly those that run customer-facing code, as

interchangeable members of a group. It’s the only way to successfully use

the cloud’s “auto scaling” feature.

They all perform the same function, so you don’t need to be concerned

with them individually. The role configuration across servers must be

aligned and the deployment process should be fully automated.

COMPOSE

SWARM

CLUSTER
MANAGERS

.yml Description

Container

Cluster Manager 1 Cluster Manager 2

Swarm

Node Node Node

Swarm

Node Node Node

Container Container

Docker CLI

26Go to Table of Contents

Fig. 6: Original idea - Martin Fowler

(https://martinfowler.com/articles/microservices.html). Scaling microservices can be

efficient because you can add resources directly where needed. You don’t have to deal

with storage replication, sticky sessions and all that kind of stuff because services are

stateless and loosely-coupled by design.

A monolithic application
puts all its functionality
into a single process...

... and scales by
replicating the monolith
on multiple servers

A microservices
architecture puts each
element of functionality
into a separate service ...

... and scales by distributing
these services across servers,
replicating as needed

27Go to Table of Contents

Fig. 6: Original idea - Martin Fowler

(https://martinfowler.com/articles/microservices.html). Scaling microservices can be

efficient because you can add resources directly where needed. You don’t have to deal

with storage replication, sticky sessions and all that kind of stuff because services are

stateless and loosely-coupled by design.

A monolithic application
puts all its functionality
into a single process...

... and scales by
replicating the monolith
on multiple servers

A microservices
architecture puts each
element of functionality
into a separate service ...

... and scales by distributing
these services across servers,
replicating as needed

Related techniques
and patterns

28Go to Table of Contents

Related Techniques and Patterns

This eBook is intended to give you a quick-start, practical overview of the

microservices approach. I believe, once interested in the topic, you can

find additional sources to dig into. In this chapter I would like to mention

just a few programming techniques and design patterns which have

become popular with microservices gaining the spotlight. We want to

cover the full scope of building microservices and tools that can be

particularly useful to that goal.

CAP theorem

Also called “Brewer theorem” after Eric Brewer, states that, for distributed

systems it’s not possible to provide more than two of the following three

guarantees:

• Consistency - every read receives the most recent data or error.

• Availability - every request receives a (non-error) response BUT without

 a guarantee of most-recent data.

• Partition tolerance - interpreted as a system able to work despite the

 number of dropped messages between cluster nodes.

In other words - when it comes to communication issues (partition of the

cluster), you must choose between consistency or availability. This is

strongly connected with techniques of high availability like caching and

data redundancy (eg. database replication).

29Go to Table of Contents

Related Techniques and Patterns

This eBook is intended to give you a quick-start, practical overview of the

microservices approach. I believe, once interested in the topic, you can

find additional sources to dig into. In this chapter I would like to mention

just a few programming techniques and design patterns which have

become popular with microservices gaining the spotlight. We want to

cover the full scope of building microservices and tools that can be

particularly useful to that goal.

CAP theorem

Also called “Brewer theorem” after Eric Brewer, states that, for distributed

systems it’s not possible to provide more than two of the following three

guarantees:

• Consistency - every read receives the most recent data or error.

• Availability - every request receives a (non-error) response BUT without

 a guarantee of most-recent data.

• Partition tolerance - interpreted as a system able to work despite the

 number of dropped messages between cluster nodes.

In other words - when it comes to communication issues (partition of the

cluster), you must choose between consistency or availability. This is

strongly connected with techniques of high availability like caching and

data redundancy (eg. database replication).

When the system is running normally - both availability and consistency

can be provided. In case of failure, you get two choices:

• Raise an error (and break the availability promise) because it’s not

guaranteed that all data replicas are updated.

• Provide the user with cached data (due to the very same reason as

above).

Traditional database systems (compliant with ACID6) prefer consistency

over availability.

Eventual consistency

When the system is running normally - both availability and consistency

can be provided. In case of failure, you get two choices:

It’s not a programming technique but rather something you have to think

about when designing distributed systems. This consistency model is

connected directly to the CAP theorem and informally guarantees that if

no new updates are made to a given data item, eventually all access

to that item will return the last updated value.

Eventually consistent services are often classified as providing BASE

(Basically Available, Soft state, Eventual consistency) semantics, in

contrast to traditional ACID guarantees.

6 https://en.wikipedia.org/wiki/ACID

30Go to Table of Contents

To achieve eventual consistency, the distributed system must resolve data

conflicts between multiple copies of replicated data. This usually consists

of two parts:

• Exchanging updates between servers in a cluster

• Choosing the final state.

The widespread model for choosing the final state is “last writer wins” -

achieved by including an update timestamp along with an updated copy

of data.

Having knowledge of the core theories that underpin the issues which we

may encounter when developing and designing a distributed

architecture, we can now go into higher-level concepts and patterns.

Design patterns are techniques that allow us to compose code of our

microservices in a more structured way and facilitate further maintenance

and development of our platform.

Design patterns

CQRS means Command-Query Responsibility Segregation. The core idea

behind CQRS is the extension of the CQS concept by Bertrand Meyer,

where objects have two types of methods. Command methods perform

actions in systems and always return nothing, query methods return

values and they have no effect on the system.

CQRS

31Go to Table of Contents

To achieve eventual consistency, the distributed system must resolve data

conflicts between multiple copies of replicated data. This usually consists

of two parts:

• Exchanging updates between servers in a cluster

• Choosing the final state.

The widespread model for choosing the final state is “last writer wins” -

achieved by including an update timestamp along with an updated copy

of data.

Having knowledge of the core theories that underpin the issues which we

may encounter when developing and designing a distributed

architecture, we can now go into higher-level concepts and patterns.

Design patterns are techniques that allow us to compose code of our

microservices in a more structured way and facilitate further maintenance

and development of our platform.

Design patterns

CQRS means Command-Query Responsibility Segregation. The core idea

behind CQRS is the extension of the CQS concept by Bertrand Meyer,

where objects have two types of methods. Command methods perform

actions in systems and always return nothing, query methods return

values and they have no effect on the system.

CQRS

In CQRS, write requests (aka commands) and read requests (aka queries)

are separated into different models. The write model will accept

commands and perform actions on the data, the read model will accept

queries and return data to the application UI. The read model should be

updated if, and only if, the write model was changed. Moreover, single

changes in the write model may cause updates in more than one read

model. What is very interesting is that there is a possibility to split data

storage layers, set up a dedicated data store for writes and reads, and

modify and scale them independently.

For example, all write requests in the eCommerce application, like adding

a new order or product reviews, can be stored in a typical SQL database

but some read requests, like finding similar products, can be delegated

by the read model to a graph engine.

General flow in CQRS application:

• Application creates a command as a result of user action.

• Command is processed, write model saves changes in data store.

• Read model is updated based on changes in write model.

Pros:

• Better scalability and performance.

• Simple queries and commands.

• Possibility to use different data storage and theirs functionalities.

• Works well in complex domains.

32Go to Table of Contents

Cons:

• Increased complexity of the entire system.

• Eventually consistent, read model may be out of sync with write model

 for a while.

• Possible data and code duplication.

Query Model

Service Interface

Command Model

query
model

reads from
database

command
model

updates
database

query services update
presentations from query

model

command model
executes validations,

and consequential
logic

application
routes

change
information
to command

model

user makes a change
in the UI

33Go to Table of Contents

Cons:

• Increased complexity of the entire system.

• Eventually consistent, read model may be out of sync with write model

 for a while.

• Possible data and code duplication.

Query Model

Service Interface

Command Model

query
model

reads from
database

command
model

updates
database

query services update
presentations from query

model

command model
executes validations,

and consequential
logic

application
routes

change
information
to command

model

user makes a change
in the UI

Data stores are often designed to directly keep the actual state of the

system without storing the history of all the submitted changes. In some

situations this can cause problems. For example, if there is a need to

prepare a new read model for some specific point of time (like your

current address on an invoice from 3 months ago - which may have

changed in the meantime - and you haven’t stored the time-stamped data

snapshots, it will be a big deal to reprint or modify the correct document).

Event Sourcing stores all changes as a time-ordered sequence of events;

each event is an object that represents a domain action from the past. All

events published by the application object persist inside a dedicated,

append-only data store called Event Store. This is not just an audit-log for

the whole system because the main role of Event Store is to reconstruct

application objects based on the history of the related events.

UI
Fig. 9: CQRS architecture (https://martinfowler.com/bliki/images/cqrs/cqrs.png).

Event Sourcing

34Go to Table of Contents

PRESENTATION

Item 1 added

Item 2 added

Item 1 removed

Cart

Cart ID

Date

Customer

Address

...

Cart Item

Cart ID

Item key

Item name

Quantity

...

Shipping information added

Event store

Published events

Replayed events

Some options for
consuming events

MATERLIALIZED VIEW

QUERY FOR CURRENT
STATE OF ENTITIES

Persisted
events

EXTERNAL
SYSTEMS AND
APPLICATIONS

Fig. 10: Event Sourcing overview

(https://docs.microsoft.com/en-us/azure/architecture/patterns/_images/event-sourcing-o

verview.png).

Consider the following sequence of domain events, regarding each

Order lifecycle:

• OrderCreated

• OrderApproved

• OrderPaid

• OrderPrepared

• OrderShipped

• OrderDelivered

35Go to Table of Contents

PRESENTATION

Item 1 added

Item 2 added

Item 1 removed

Cart

Cart ID

Date

Customer

Address

...

Cart Item

Cart ID

Item key

Item name

Quantity

...

Shipping information added

Event store

Published events

Replayed events

Some options for
consuming events

MATERLIALIZED VIEW

QUERY FOR CURRENT
STATE OF ENTITIES

Persisted
events

EXTERNAL
SYSTEMS AND
APPLICATIONS

Fig. 10: Event Sourcing overview

(https://docs.microsoft.com/en-us/azure/architecture/patterns/_images/event-sourcing-o

verview.png).

Consider the following sequence of domain events, regarding each

Order lifecycle:

• OrderCreated

• OrderApproved

• OrderPaid

• OrderPrepared

• OrderShipped

• OrderDelivered

During the recreation phase, all events are fetched from the EventStore

and applied to a newly constructed entity. Each applied event changes

the internal state of the entity.

The benefits of this approach are obvious. Each event represents an

action, which is even better if DDD is used in the project. There is a trace

of every single change in domain entities.

But there are also some potential drawbacks here… How can we get the

current states of tens of objects? How fast will object recreation be if the

events list contains thousands of items?

Fortunately, the Event Sourcing technique has prepared solutions to

these problems. Based on the events, the application can update one or

more from materialized views, so there is no need to fetch all objects from

the event history to get their current states.

If the event history of the entity is long, the application may also create

some snapshots. By “snapshot”, I mean the state of the entity after every

n-th event. The recreation phase will be much faster because there is no

need to fetch all the changes from the Event Store, just the latest

snapshot and further events.

36Go to Table of Contents

User Interface

Command Bus Query Facade

Command Handler

Command Handler EventHandler

Domain
Model

Domain
Model

Domain
Model

Event
store

Data

Ev
en

t B
us

Thin Data Layer

Fig. 11: Event Sourcing with CQRS

(https://pablocastilla.files.wordpress.com/2014/09/cqrs.png?w=640).

37Go to Table of Contents

User Interface

Command Bus Query Facade

Command Handler

Command Handler EventHandler

Domain
Model

Domain
Model

Domain
Model

Event
store

Data

Ev
en

t B
us

Thin Data Layer

Fig. 11: Event Sourcing with CQRS

(https://pablocastilla.files.wordpress.com/2014/09/cqrs.png?w=640).

Event Sourcing works very well with CQRS and Event Storming, a

technique for domain event identification by Alberto Brandolini. Events

found with domain experts will be published by entities inside the write

model. They will be transferred to a synchronous or asynchronous event

bus and processed by event handlers. In this scenario, event handlers will

be responsible for updating one or more read models.

Pros:

• Perfect for modeling complex domains.

• Possibility to replay all stored events and build new read models.

• Reliable audit-log for free.

Cons:

• Queries implemented with CQRS.

• Eventually consistent model.

Event driven data management

Microservices should be coupled as loosely as possible, It should be

possible to develop, test, deploy and scale them independently.

Sometimes an application should even be able to work without particular

services (to comply with HA - high availability)… To achieve these

requirements, each microservice should have a separate data store.

Sounds easy - but what about the data itself? How to spread the

information changes between services? What about consistency within

the data?

38Go to Table of Contents

One of the best solutions is simply using events. If anything important

happened inside a microservice, a specific event is published to the

message broker. Other microservices may connect to the message broker,

receive, and consume a dedicated copy of that message. Consumers may

also decide which part of the data should be duplicated to their local

store.

Safe publishing of events from the microservice is quite complicated.

Events must be published to the message broker if, and only if, data

stored in a data store has changed. Other scenarios may lead to huge

consistency problems. Usually it means that data and events should

persist inside the same transaction to a single data store and then

propagate to the rest of the system.

Switching from theory to a practical point of view, it’s quite a common

case to use RabbitMQ as a message broker. RabbitMQ is a very fast and

efficient queue server written in Erlang with wide set of client libraries for

the most popular programming languages. A popular alternative to

RabbitMQ is Apache Kafka, especially for bigger setups or when event

stream mining and analytics is critical.

Spreading data across multiple separated data stores and achieving

consistency using events can cause some problems. For example, there is

no easy way to execute a distributed transaction on different databases.

Moreover, there can also be consistency issues because when events are

inside the message broker, somewhere between microservices, the state

of the whole system is inconsistent. The data store behind the original

microservice is updated but changes aren’t applied on data stores behind

other microservices. This model, called Eventually Consistent,

39Go to Table of Contents

One of the best solutions is simply using events. If anything important

happened inside a microservice, a specific event is published to the

message broker. Other microservices may connect to the message broker,

receive, and consume a dedicated copy of that message. Consumers may

also decide which part of the data should be duplicated to their local

store.

Safe publishing of events from the microservice is quite complicated.

Events must be published to the message broker if, and only if, data

stored in a data store has changed. Other scenarios may lead to huge

consistency problems. Usually it means that data and events should

persist inside the same transaction to a single data store and then

propagate to the rest of the system.

Switching from theory to a practical point of view, it’s quite a common

case to use RabbitMQ as a message broker. RabbitMQ is a very fast and

efficient queue server written in Erlang with wide set of client libraries for

the most popular programming languages. A popular alternative to

RabbitMQ is Apache Kafka, especially for bigger setups or when event

stream mining and analytics is critical.

Spreading data across multiple separated data stores and achieving

consistency using events can cause some problems. For example, there is

no easy way to execute a distributed transaction on different databases.

Moreover, there can also be consistency issues because when events are

inside the message broker, somewhere between microservices, the state

of the whole system is inconsistent. The data store behind the original

microservice is updated but changes aren’t applied on data stores behind

other microservices. This model, called Eventually Consistent,

is a Data will be synchronized in the future but you can also stop some

services and you will never lose your data. They will be processed when

services are restored.

In some situations, when a new microservice is introduced, there is a need

to seed the database. If there is a chance to use data directly from

different „sources of truth”, it’s probably the best way to setup a new

service. But other microservices may also expose feeds of theirs events,

for example in the form of ATOM feeds. New microservices may process

them in chronological order, to compile the final state of new data stores.

Of course, in this scenario each microservice should keep a history of all

events, which can sometimes be a subsequent challenge.

Integration techniques

System integration is key to developing efficient microservices

architecture. Services must talk to each other in a consistent way. The

overall structure of a platform could be easily discoverable by hiding all of

the dependencies behind facades like a common API gateway.

Moreover, all of that communication should use authentication

mechanisms as microservices are commonly exposed to the outside

world. They should not be designed with the intention of residing only in

our firewall-protected network. We show two possible ways of making our

integration secure by using token based techniques such as OAuth2 and

JWT.

40Go to Table of Contents

API Gateways

With the microservices approach, it’s quite easy to make internal network

communication very talkative. Nowadays, when 10G network connections

are standard in data-centers, there may be nothing wrong with that. But

when it comes to communication between your mobile app and backend

services, you might want to compress as much information as possible

into one request.

The second reason to criticise microservices might be a challenge with

additional sub-service calls like authorization, filtering etc.

To overcome the mentioned obstacles, we can use the API Gateway

approach. It means you can compile several microservices using one

facade. It combines multiple responses from internal sub-services into a

single response.

With almost no business logic included, gateways are an easy and safe

choice to optimize communication between frontend and backend or

between different backend systems.

41

API Gateways

With the microservices approach, it’s quite easy to make internal network

communication very talkative. Nowadays, when 10G network connections

are standard in data-centers, there may be nothing wrong with that. But

when it comes to communication between your mobile app and backend

services, you might want to compress as much information as possible

into one request.

The second reason to criticise microservices might be a challenge with

additional sub-service calls like authorization, filtering etc.

To overcome the mentioned obstacles, we can use the API Gateway

approach. It means you can compile several microservices using one

facade. It combines multiple responses from internal sub-services into a

single response.

With almost no business logic included, gateways are an easy and safe

choice to optimize communication between frontend and backend or

between different backend systems.

View Controller

Model

Traditional server-side
web application

Browser/Native App

View Controller

API
Gateway

REST Product Info
Service

Recommendation
Service

Review
Service

REST

AMQP

Model

Protocol
translation

Single
entry poiont

Client
speci�c

APIs

Fig. 12: Using an API gateway you can compose your sub-service calls into easy to

understand and easy to use facades. Traffic optimization, caching and authorization are

additional benefits of such an approach

The API Gateway - which is an implementation of classic Proxy patterns -

can provide a caching mechanism as well (even using a vanilla-Varnish

cache layer without additional development effort). With this feature

alone, using cloud approaches (like Amazon solutions), can scale API and

services very easily.

Additionally, you can provide common authorization layers for all services

behind the gateway. For example - that’s how Amazon API Gateway

Service7 + Amazon Cogito8 work.

7 https://aws.amazon.com/api-gateway/

8 http://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html

42

Mobile Apps

Amazon Cloud Watch

AWS Lambda
functions

Endpoints on
Amazon EC2

Any other publicly
accessible endpoint

Websites

Services

Internet

Receive incoming
request

Check for Item in
dedicated cache

If found return cached
Item

Check throttling
con�guration

Execute
backend

call
Check current RPS
rate

If above allowed ratio
return 429

Fig. 13: Amazon API Gateway request workflow

https://aws.amazon.com/api-gateway/details/). Amazon gateway supports caching and

authorization features in spite of your web-service internals.

Swagger9 can help you, once a Gateway has been built, with direct

integration and support to Amazon services.

Backend for Frontends

A typical example of an API Gateway is the backend for frontends (BFF)

pattern. It is about facades and compiling several microservices into

optimized / device or channel-oriented API services. Its microservice

design pattern was proposed by Sam Newman of Thought Works (author

of “Building Microservices”): to create single purpose edge APIs for

frontends and other parties.

Creating such a facade-API brings at least two benefits to your

application:

• If you manage to have a few micro services behind your facade, you can

 avoid network latency - which is especially important on mobile devices.

9 http://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html

43Go to Table of Contents

Mobile Apps

Amazon Cloud Watch

AWS Lambda
functions

Endpoints on
Amazon EC2

Any other publicly
accessible endpoint

Websites

Services

Internet

Receive incoming
request

Check for Item in
dedicated cache

If found return cached
Item

Check throttling
con�guration

Execute
backend

call
Check current RPS
rate

If above allowed ratio
return 429

Fig. 13: Amazon API Gateway request workflow

https://aws.amazon.com/api-gateway/details/). Amazon gateway supports caching and

authorization features in spite of your web-service internals.

Swagger9 can help you, once a Gateway has been built, with direct

integration and support to Amazon services.

Backend for Frontends

A typical example of an API Gateway is the backend for frontends (BFF)

pattern. It is about facades and compiling several microservices into

optimized / device or channel-oriented API services. Its microservice

design pattern was proposed by Sam Newman of Thought Works (author

of “Building Microservices”): to create single purpose edge APIs for

frontends and other parties.

Creating such a facade-API brings at least two benefits to your

application:

• If you manage to have a few micro services behind your facade, you can

 avoid network latency - which is especially important on mobile devices.

9 http://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html

Using a facade, you can hide all network traffic between services

executing the sub-calls in internal networks from the end-client.

• Then you can optimize your calls to be more compliant with a specific

 domain model. You can model the API structures by merging and

 distributing subsequent service calls instead of pushing this logic to the

 API client’s code.

The diagram below shows a migration from General Purpose API to a

dedicated backends for frontends approach which integrates the

sub-services into logic.

Team C

iOS
App

Team A

iOS BFF

Android
App

Team B

Android BFF

Inventory

Team D

Wishlist Catalog

Mobile
App

Mobile Team

General Purpose Server-side API

Web Team

Team A Team B

API Team

Fig. 14: Backend for frontends architecture is about minimizing the number of backend

calls and optimizing the interfaces to a supported device.

44Go to Table of Contents

There are many approaches to separate backend for frontends and

roughly speaking it always depends on the differences in data required by

a specific frontend, or usage-patterns behind specific API clients. One can

imagine a separate API for frontend, mobile apps - as well as separate

interfaces for iOS and Android if there are any differences between these

applications regarding how service calls are made or their respective data

formats.

One of the concerns of having a single BFF per user interface is that you

can end up with lots of code duplication between the BFFs themselves.

Pete Hodgson (ex. Thought Works) suggests that BFFs work best when

organized around teams. The team structure should drive how many BFFs

you have. This is a pragmatic approach to not over-engineer your system

but rather have one mobile API if you have one mobile team etc.

It’s then a common pattern to separate shared algorithms, models and

code to separate the shared service or library used by frontend-related

facades. Creating such duplications can be avoided.

Let me quote a conclusion on BFF presented by Sam Newman himself:

Backends For Frontends solve a pressing concern for mobile

development when using microservices. In addition, they provide a

compelling alternative to the general-purpose API backend, and many

teams make use of them for purposes other than just mobile

development. The simple act of limiting the number of consumers they

support makes them much easier to work with and change, and helps

teams developing customer-facing applications retain more autonomy10.

10 http://samnewman.io/patterns/architectural/bff/

http://samnewman.io/patterns/architectural/bff/

45Go to Table of Contents

There are many approaches to separate backend for frontends and

roughly speaking it always depends on the differences in data required by

a specific frontend, or usage-patterns behind specific API clients. One can

imagine a separate API for frontend, mobile apps - as well as separate

interfaces for iOS and Android if there are any differences between these

applications regarding how service calls are made or their respective data

formats.

One of the concerns of having a single BFF per user interface is that you

can end up with lots of code duplication between the BFFs themselves.

Pete Hodgson (ex. Thought Works) suggests that BFFs work best when

organized around teams. The team structure should drive how many BFFs

you have. This is a pragmatic approach to not over-engineer your system

but rather have one mobile API if you have one mobile team etc.

It’s then a common pattern to separate shared algorithms, models and

code to separate the shared service or library used by frontend-related

facades. Creating such duplications can be avoided.

Let me quote a conclusion on BFF presented by Sam Newman himself:

Backends For Frontends solve a pressing concern for mobile

development when using microservices. In addition, they provide a

compelling alternative to the general-purpose API backend, and many

teams make use of them for purposes other than just mobile

development. The simple act of limiting the number of consumers they

support makes them much easier to work with and change, and helps

teams developing customer-facing applications retain more autonomy10.

10 http://samnewman.io/patterns/architectural/bff/

Token based authorization (oauth2, JWT)

Authorization is a key feature of any enterprise grade application. If you

remember the beginnings of web 2.0 and Web API’s back then, a typical

authorization scenario was based on an API key or HTTP authorization.

With ease of use came some strings attached. Basically these “static”

(API key) and not strongly encrypted (basic auth.) methods were not

secure enough.

Here, delegated authorization methods come into action. By delegated,

we mean that authorization can be given by an external system / identity

provider. One of the first methods of providing such authentication was

the OpenID standard11 developed around 2005. It could provide a One

Login and Single Sign On for any user. Unfortunately, it wasn’t widely

accepted by identification providers like Google, Facebook or e-mail

providers.

The OAuth standard works pretty similarly to OpenID. The authorization

provider allows Application Developers to register their own applications

with the required data-scope to be obtained in the name of the user. The

user authorizes specific applications to use with their account.

Facebook or Google Account login screens are a well known part of oauth

authorization.

11 http://openid.net/

46Go to Table of Contents

After accepting the application request the authority party returns a

temporary Access Token which should be used with API calls to verify the

user identity. The Internal Authorization server checks tokens with its own

database of issued tokens - paired with user identities, ACLs, etc.

Authorization tokens are issued for a specific amount of time and should

be invalidated afterwards. Token authorization is 100% stateless; you

don’t have to use sessions (like with good, old session based

authorization)12. OAuth 2.0 requires SSL communication and avoids

additional request-response signatures required by the previous version

(requests were signed using HMAC algorithms); also, the workflow was

simplified with 2.0 removing one additional HTTP request.

Fig. 15: Authorization screen for Google Accounts to authorize external application to

use Google APIs in the name of the user.

12 http://stackoverflow.com/questions/7561631/oauth-2-0-benefits-and-use-cases-why

http:// http://stackoverflow.com/questions/7561631/oauth-2-0-benefits-and-use-cases-why

47Go to Table of Contents

After accepting the application request the authority party returns a

temporary Access Token which should be used with API calls to verify the

user identity. The Internal Authorization server checks tokens with its own

database of issued tokens - paired with user identities, ACLs, etc.

Authorization tokens are issued for a specific amount of time and should

be invalidated afterwards. Token authorization is 100% stateless; you

don’t have to use sessions (like with good, old session based

authorization)12. OAuth 2.0 requires SSL communication and avoids

additional request-response signatures required by the previous version

(requests were signed using HMAC algorithms); also, the workflow was

simplified with 2.0 removing one additional HTTP request.

Fig. 15: Authorization screen for Google Accounts to authorize external application to

use Google APIs in the name of the user.

12 http://stackoverflow.com/questions/7561631/oauth-2-0-benefits-and-use-cases-why

OAuth tokens don’t push you to display the authentication dialog each

time a user requires access to their data. Following this path would make

it impossible to check e-mail in the background or do any batch

processing operations. So how to deal with such background-operations?

You should use “offline” tokens13 - which are given for longer time periods

and can also be used to remember client credentials without requiring

login/password each time the user hits your application.

There is usually no need to rewrite your own OAuth code as many open

source libraries are available for most OAuth providers and frameworks.

Just take a look on Github!

BROWSER APPLICATION AUTHORIZATION SERVER RESOURCE SERVER

7.1: Get Access Token

7.2: Return Access Token

1: Request application page

1.1: Redirect to Authorization Server

7: User Valid and Authorization access

7.5

2: Request Login

2.1: Deliver Login page

3: Enter Login details and authorization access

4: Send Login details

6: Redirect to Application 5: Validate Login details

7.3: Get data

7.3.2: Return data 7.3.1: Check Access token

7.4: Generate Page

Fig. 16: Authorization flow for oauth2.

13 https://auth0.com/docs/tokens/refresh-token

48

JSON Web Tokens (JWT)

Yet another approach to token based authorization is JWT16 (JSON Web

Tokens). They can be used for stateless claim exchange between parties.

As OAuth tokens require validation by the authenticating party between

all requests - JSON Web Tokens are designed to self-contain all

information required and can be used without touching the database or

any other data source.

JWT are self-contained which means that tokens contain all the

information. They are encoded and signed up using HMAC.

This allows you to fully rely on data APIs that are stateless and even make

requests to downstream services. It doesn't matter which domains are

serving your APIs, so Cross-Origin Resource Sharing (CORS) won't be an

issue as it doesn't use cookies17.

14 https://aws.amazon.com/cognito/

15 https://auth0.com/how-it-works

16 https://jwt.io/

17 https://jwt.io/introduction/

There are SaaS solutions for identity and authorization, such as Amazon

Cogito14 or Auth015 that can be easily used to outsource the authorization

of your API’s.

49Go to Table of Contents

JSON Web Tokens (JWT)

Yet another approach to token based authorization is JWT16 (JSON Web

Tokens). They can be used for stateless claim exchange between parties.

As OAuth tokens require validation by the authenticating party between

all requests - JSON Web Tokens are designed to self-contain all

information required and can be used without touching the database or

any other data source.

JWT are self-contained which means that tokens contain all the

information. They are encoded and signed up using HMAC.

This allows you to fully rely on data APIs that are stateless and even make

requests to downstream services. It doesn't matter which domains are

serving your APIs, so Cross-Origin Resource Sharing (CORS) won't be an

issue as it doesn't use cookies17.

14 https://aws.amazon.com/cognito/

15 https://auth0.com/how-it-works

16 https://jwt.io/

17 https://jwt.io/introduction/

There are SaaS solutions for identity and authorization, such as Amazon

Cogito14 or Auth015 that can be easily used to outsource the authorization

of your API’s.

Validation of HMAC tokens18 requires the knowledge of the secret key

used to generate the token. Typically the receiving service (your API) will

need to contact the authentication server as that server is where the

secret is being kept19.

Please take a look at the example.

Example token:

Contains following informations: Please take a look at the example.

18 https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

19 https://jwt.io/introduction/

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxM-
jM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOn
RydWV9.TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh
7HgQ

Header

(algorithm and token type)

{

 "alg": "HS256",

 "typ": "JWT"

}

Payload

(data)

{

 "sub": "1234567890",

 "name": "John Doe",

 "admin": true

}

Signature HMACSHA256(

 base64UrlEncode(header) + "." +

 base64UrlEncode(payload),

) secret base64 encoded

50Go to Table of Contents

JWT tokens are usually passed by the HTTP Bearer header, then stored

client side using localStorage or any other resource. Tokens can be

invalidated at that time (exp claim included into token).

Once returned from authorization, service tokens can be passed to all API

calls and validated server side. Because of the HMAC based signing

process, tokens are safe.

If done wrong, microservices may come with an overhead of operational

tasks needed for the deployments and maintenance. When dividing a

monolithic platform into smaller pieces, each of them should be easy to

deploy in an automatic way.

18 https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

19 https://jwt.io/introduction/

BROWSER SERVER

1. POST /users/login with username and password

3. Returns the JWT to the Browser
2. Creates a JWT
 with a secret

4. Sends the JWT on the Authorization Header

6. Sends response to the client

5. Check JWT signature.
 Get user information
 from the JWT

Fig. 17: JWT based authorization is pretty straight forward and it’s safe. Tokens can be

trusted by authorized parties because of the HMAC signature; therefore information

contained by them can be used without checking ACL’s and any further permissions.

Deployment of microservices

51Go to Table of Contents

JWT tokens are usually passed by the HTTP Bearer header, then stored

client side using localStorage or any other resource. Tokens can be

invalidated at that time (exp claim included into token).

Once returned from authorization, service tokens can be passed to all API

calls and validated server side. Because of the HMAC based signing

process, tokens are safe.

If done wrong, microservices may come with an overhead of operational

tasks needed for the deployments and maintenance. When dividing a

monolithic platform into smaller pieces, each of them should be easy to

deploy in an automatic way.

18 https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

19 https://jwt.io/introduction/

BROWSER SERVER

1. POST /users/login with username and password

3. Returns the JWT to the Browser
2. Creates a JWT
 with a secret

4. Sends the JWT on the Authorization Header

6. Sends response to the client

5. Check JWT signature.
 Get user information
 from the JWT

Fig. 17: JWT based authorization is pretty straight forward and it’s safe. Tokens can be

trusted by authorized parties because of the HMAC signature; therefore information

contained by them can be used without checking ACL’s and any further permissions.

Deployment of microservices

Microservices should be coupled as loosely as possible, It should be

possible to develop, test, deploy and scale them independently.

Sometimes an application should even be able to work without particular

services (to comply with HA - high availability)… To achieve these

requirements, each microservice should have a separate data store.

Sounds easy - but what about the data itself? How to spread the

information changes between services? What about consistency within

the data?

Nowadays, we see two main concepts that facilitates such a process -

containerization and serverless architecture.

This might sound familiar: virtualization allows you to achieve pretty much

the same goals but in contrast to virtualization, Docker runs all processes

directly on the host operating system. This helps to avoid the overhead of

a virtual machine (both performance and maintenance).

Docker and containerization

If you are not familiar with containerization, then here are the most

common benefits that make it worth digging deeper into this concept:

• Docker allows you to build an application once and then execute it in all

 your environments no matter what the differences between them.

• Docker helps you to solve dependency and incompatibility issues.

• Docker is like a virtual machine without the overhead.

• Docker environments can be fully automated.

• Docker is easy to deploy.

• Docker allows for separation of duties.

• Docker allows you to scale easily.

• Docker has a huge community.

Let's start with a quote from the Docker page:

Docker containers wrap up a piece of software in a complete filesystem

that contains everything it needs to run: code, runtime, system tools,

system libraries – anything you can install on a server. This guarantees that

it will always run the same, regardless of the environment it is running in.

52Go to Table of Contents

Docker achieves this using the isolation features of the Linux kernel such

as Cgroups and kernel namespaces. Each container has its own process

space, filesystem and memory. You can run all kinds of Linux distributions

inside a container. What makes Docker really useful is the community and

all projects that complement the main functionality. There are multiple

tools to automate common tasks, orchestrate and scale containerized

systems. Docker is also heavily supported by many companies, just to

name a couple: Amazon, Google, Microsoft. Currently, Docker also allows

us to run Windows inside containers (only on Windows hosts).

Docker basics

Before we dig into using Docker for the Microservices architecture let’s

browse the top-level details of how it works.

Image - holds the file system and parameters needed to run an

application. It does not have any state and it does not change. You can

understand an image as a template used to run containers.

Container - this is a running instance of an image. You can run multiple

instances of the same image. It has a state and can change.

Image layer - each image is built out of layers. Images are usually built by

running commands or adding/modifying files (using a Dockerfile). Each

step that is run in order to build an Image is an image layer. Docker saves

each layer, so when you run a build next time, it is able to reuse the layers

that did not change. Layers are shared between all images so if two

images start with similar steps, the layers are shared between them. You

can see this illustrated below.

53Go to Table of Contents

Docker achieves this using the isolation features of the Linux kernel such

as Cgroups and kernel namespaces. Each container has its own process

space, filesystem and memory. You can run all kinds of Linux distributions

inside a container. What makes Docker really useful is the community and

all projects that complement the main functionality. There are multiple

tools to automate common tasks, orchestrate and scale containerized

systems. Docker is also heavily supported by many companies, just to

name a couple: Amazon, Google, Microsoft. Currently, Docker also allows

us to run Windows inside containers (only on Windows hosts).

Docker basics

Before we dig into using Docker for the Microservices architecture let’s

browse the top-level details of how it works.

Image - holds the file system and parameters needed to run an

application. It does not have any state and it does not change. You can

understand an image as a template used to run containers.

Container - this is a running instance of an image. You can run multiple

instances of the same image. It has a state and can change.

Image layer - each image is built out of layers. Images are usually built by

running commands or adding/modifying files (using a Dockerfile). Each

step that is run in order to build an Image is an image layer. Docker saves

each layer, so when you run a build next time, it is able to reuse the layers

that did not change. Layers are shared between all images so if two

images start with similar steps, the layers are shared between them. You

can see this illustrated below.

Fig. 18: You can use https://imagelayers.io/ to analyze Docker image layers and compare

them to each other. For example: ruby, python, node images share five layers - this means

that if you download all three images the first 5 layers will be downloaded only once.

As you can see, all compared images share common layers. So if you

download one of them, the shared layers will not be downloaded and

stored again when downloading a different image. In fact, changes in a

running container are also seen as an additional, uncommitted layer.

Registry - a place where images and image layers are kept. You can build

an image on your CI server, push it to a registry and then use the image

from all of your nodes without the need to build the images again.

Orchestration (docker-compose) - usually a system is built of several or

more containers. This is because you should have only one concern per

container. Orchestration allows you to run a multi-container application

much easier and docker-compose is the most commonly used tool to

achieve that. It has the ability to run multiple containers that can be

connected with networks and share volumes.

54Go to Table of Contents

VM vs. Container

As mentioned earlier, Docker might seem similar to virtual machines but

works in an entirely different way.

Virtual machines work exactly as the name suggests: by creating a

virtualized machine that the guest system is using. The main part is a

Hypervisor running on the host system and granting access to all kinds of

resources for the guest systems. On top of the Hypervisor, there are Guest

OS’s running on each virtual machine. Your application is using this Guest

OS.

What Docker does differently is directly using the host system (no need

for Hypervisor and Guest OS), it runs the containers using several features

of the Linux kernel that allow them to securely separate the processes

inside them. Thanks to this, a process inside the container cannot

influence processes outside of it. This approach makes Docker more

lightweight both in terms of CPU/Memory usage, and disk space usage.

App 1

Bins/Libs

Hypervisor

Host Operating System

Infrastructure

App 2

Bins/Libs

App 3

Bins/Libs

Guest OS Guest OS Guest OS

55Go to Table of Contents

VM vs. Container

As mentioned earlier, Docker might seem similar to virtual machines but

works in an entirely different way.

Virtual machines work exactly as the name suggests: by creating a

virtualized machine that the guest system is using. The main part is a

Hypervisor running on the host system and granting access to all kinds of

resources for the guest systems. On top of the Hypervisor, there are Guest

OS’s running on each virtual machine. Your application is using this Guest

OS.

What Docker does differently is directly using the host system (no need

for Hypervisor and Guest OS), it runs the containers using several features

of the Linux kernel that allow them to securely separate the processes

inside them. Thanks to this, a process inside the container cannot

influence processes outside of it. This approach makes Docker more

lightweight both in terms of CPU/Memory usage, and disk space usage.

App 1

Bins/Libs

Hypervisor

Host Operating System

Infrastructure

App 2

Bins/Libs

App 3

Bins/Libs

Guest OS Guest OS Guest OS

From dev to production

Ok, so we have the technical introduction covered. Now let’s see how

Docker helps to build, run and maintain a Microservice oriented

application.

Development

Development is usually the first phase where Docker brings some extra

value, and it is even more helpful with Microservice oriented applications.

As mentioned earlier, Docker comes with tools that allow us to orchestrate

a multi-container setup in a very easy way. Let's take a look at the benefits

Docker brings during development.

App 1

Bins/Libs

Docker Engine

Operating System

Infrastructure

App 2

Bins/Libs

App 3

Bins/Libs

Fig. 19: Similar features, different architecture - Virtualization vs, Dockerization. Docker,

leverages containerization - lightweight abstraction layer between application and the

operating system / hardware. It separates the user processes but without running the

whole operating system/kernel inside the container.

56Go to Table of Contents

Easy setup - low cost of introducing new developers

You only need to create a Docker configuration once and then each new

developer on the team can start the project by executing a single

command. No need to configure the environment, just download the

project and run docker-compose up. That's all!

This might seem too good to be true but I have a good, real-life example

of such a situation. I was responsible for a project where a new front-end

developer was hired. The project was written in a very old PHP version

(5.3) and had to be run on CentOS. The developer was using Windows

and he previously worked on Java projects exclusively. I had a quick call

with him and we went through a couple of simple steps: downloading and

installing Docker, cloning the git repository and running docker-compose.

After no more than 30 minutes he had a perfectly running environment

and was ready to write his first lines of code!

No dependencies version mismatch issue

This issue often arises if a developer is involved in multiple projects, but it

escalates in Micro-service oriented applications. Each service can be

written by a different team and using different technologies. In some

cases (itusually happens quite often) there might be a version mismatch

within the same technology used in different services. A simple example:

one service is using an older elastic version, and another a newer one.

This can be dealt withaccomplished by configuring two separate versions

- but it is much easier to run them side-by-side in dedicated containers. A

very simple example of such a configuration for docker-compose would

look like this:

57Go to Table of Contents

Easy setup - low cost of introducing new developers

You only need to create a Docker configuration once and then each new

developer on the team can start the project by executing a single

command. No need to configure the environment, just download the

project and run docker-compose up. That's all!

This might seem too good to be true but I have a good, real-life example

of such a situation. I was responsible for a project where a new front-end

developer was hired. The project was written in a very old PHP version

(5.3) and had to be run on CentOS. The developer was using Windows

and he previously worked on Java projects exclusively. I had a quick call

with him and we went through a couple of simple steps: downloading and

installing Docker, cloning the git repository and running docker-compose.

After no more than 30 minutes he had a perfectly running environment

and was ready to write his first lines of code!

No dependencies version mismatch issue

This issue often arises if a developer is involved in multiple projects, but it

escalates in Micro-service oriented applications. Each service can be

written by a different team and using different technologies. In some

cases (itusually happens quite often) there might be a version mismatch

within the same technology used in different services. A simple example:

one service is using an older elastic version, and another a newer one.

This can be dealt withaccomplished by configuring two separate versions

- but it is much easier to run them side-by-side in dedicated containers. A

very simple example of such a configuration for docker-compose would

look like this:

Possibility to test if the application scales

Testing if the application scales is pretty easy with Docker. Of course, you

won't be able to make some serious load testing on your local machine,

but you can test if the application works correctly when a service is scaled

horizontally. Horizontal scalability usually fails if the Microservice is not

stateless and the state is not shared between instances. Scaling can be

very easily achieved using docker-compose:

docker-compose scale service_x=4

After running this command there will be four containers running the

same service_x. You can (and you should) also add a separate container

with a load balancer like HAProxy in front of them. That's it. You are ready

to test!

No more “works on my configuration" issues

Docker is a solution that allows one configuration to be run everywhere.

You can have the same - or almost the same - version running on all

developer machines, CI, staging, and production. This radically reduces

the amount of “works on my configuration" situations. At least it reduces

the ones caused by different setups.

service_x_elastic:
 image: elasticsearch:5.2.2
service_y_elastic:
 image: elasticsearch:2.4.4

58Go to Table of Contents

Continuous Integration

Now that you have a working development setup, configuring a CI is

really easy. You just need to setup your CI to run the same

docker-compose up command and then run your tests, etc. No need to

write any special configuration; just bring the containers up and run your

tests. I've worked with different CI servers like Gitlab CI, Circle CI, Jenkins

and the setup was always quick and easy. If some tests fail, it is easy to

debug too. Just run the tests locally.

When you have your development setup up and running, it is also quite

easy to push your application to a staging server. In most projects I know,

this process was pretty straight-forward and required only a few changes.

The main difference is in the so called volumes - files/directories that are

shared between your local disk and the disk inside a container. When

developing an application, you usually setup containers to share all

project files with Docker so you do not need to rebuild the image after

each change. On pre-production and production servers, project files

should live inside the container/image and should not be mounted on

your local disk.

The other common change applies to ports. When using Docker for

development, you usually bind your local ports to ports inside the

container, i.e. your local 8080 port to port 80 inside the container. This

makes it impossible to test scalability of such containers and makes the

URI look bad (no one likes ports inside the URI).

Pre-production

59Go to Table of Contents

Continuous Integration

Now that you have a working development setup, configuring a CI is

really easy. You just need to setup your CI to run the same

docker-compose up command and then run your tests, etc. No need to

write any special configuration; just bring the containers up and run your

tests. I've worked with different CI servers like Gitlab CI, Circle CI, Jenkins

and the setup was always quick and easy. If some tests fail, it is easy to

debug too. Just run the tests locally.

When you have your development setup up and running, it is also quite

easy to push your application to a staging server. In most projects I know,

this process was pretty straight-forward and required only a few changes.

The main difference is in the so called volumes - files/directories that are

shared between your local disk and the disk inside a container. When

developing an application, you usually setup containers to share all

project files with Docker so you do not need to rebuild the image after

each change. On pre-production and production servers, project files

should live inside the container/image and should not be mounted on

your local disk.

The other common change applies to ports. When using Docker for

development, you usually bind your local ports to ports inside the

container, i.e. your local 8080 port to port 80 inside the container. This

makes it impossible to test scalability of such containers and makes the

URI look bad (no one likes ports inside the URI).

Pre-production

So when running on any production or pre-production servers you usually

put a load balancer in front of the containers.

There are many tools that make running pre-production servers much

easier. You should definitely check out projects like Docker Swarm,

Kubernetes and Rancher. I really like Rancher as it is easy to setup and

really easy to use. We use Rancher as our main staging management tool

and all co-workers really enjoy working with it. Just to give you a small

insight into how powerful such tools are: all our team members are able

to update or create a new staging environment without any issues - and

within a few minutes!

The production configuration should be exactly the same as

pre-production. The only small difference might be the tool you use to

manage the containers. There are a multitude of popular tools used to run

production containers but my two favorites are Amazon EC2 Container

Service and Google Cloud with Kubernetes on top. Both tools allow you

to scale easily on new hosts.

One important thing you should keep in mind when going with Docker on

production - monitoring and logging. Both should be centralized and

easy to use.

Production

Cons

Docker has some downsides too. The first one you might notice is that it

60Go to Table of Contents

takes some time to learn how to use Docker. The basics are pretty easy to

learn, but it takes time to master some more complicated settings and

concepts. The main disadvantage for me is that it runs very slowly on

MacOS and Windows. Docker is built around many different concepts

from the Linux kernel so it is not able to run directly on MacOS or

Windows. It uses a Virtual Machine that runs Linux with Docker.

Docker and the Microservice architecture approach work very well

together and both concepts gain popularity each year. Over the past 4

years, we have been able to observe how Docker has gotten better and

more mature with each release. At the same time, the whole ecosystem

has grown and new tools have been published giving us more possibilities

that we could not have thought of. By using Docker, we are able to easily

run our Microservice oriented applications on our developer machines

and then run the same setup on pre- and production servers. Right now

we can configure a setup within minutes and then release our application

to a server also within minutes. I'm really curious about what new

possibilities we will get in the coming months.

Summary

Serverless - Function as a Service

Serverless is not exclusively bound to microservice oriented applications

but it is definitely good to know this concept, as it might be helpful in

many cases.

61Go to Table of Contents

takes some time to learn how to use Docker. The basics are pretty easy to

learn, but it takes time to master some more complicated settings and

concepts. The main disadvantage for me is that it runs very slowly on

MacOS and Windows. Docker is built around many different concepts

from the Linux kernel so it is not able to run directly on MacOS or

Windows. It uses a Virtual Machine that runs Linux with Docker.

Docker and the Microservice architecture approach work very well

together and both concepts gain popularity each year. Over the past 4

years, we have been able to observe how Docker has gotten better and

more mature with each release. At the same time, the whole ecosystem

has grown and new tools have been published giving us more possibilities

that we could not have thought of. By using Docker, we are able to easily

run our Microservice oriented applications on our developer machines

and then run the same setup on pre- and production servers. Right now

we can configure a setup within minutes and then release our application

to a server also within minutes. I'm really curious about what new

possibilities we will get in the coming months.

Summary

Serverless - Function as a Service

Serverless is not exclusively bound to microservice oriented applications

but it is definitely good to know this concept, as it might be helpful in

many cases.

Let me start with a couple of quotes that might be helpful for you to

understand what serverless is about:

As you can see, each of the quotes looks at serverless from a totally

different perspective. This does not mean that some of the quotes are

better, I think that all describe serverless in a very good way.

Serverless is considered to be a very bad name for what we are talking

about. This is for two reasons:

• Serverless as a concept has a broader meaning than what it usually

refers to; Serverless architecture can be used to describe both Backend as

a Service and Function as a Service. Usually, and also in this article, we are

interested in the latter: FaaS.

Serverless is a new cloud computing trend that changes the
way you think about writing and maintaining applications.

— AUTH0.COM

Deploy your applications as independent functions, that
respond to events, charge you only when they run, and scale
automatically.

— SERVERLESS.COM

Serverless architectures refer to (..) custom code that's run in
ephemeral containers.

— MARTINFOWLER.COM

62Go to Table of Contents

• Serverless is a lie. The truth is that servers are still there, Ops are also

there. So why is this called „serverless” - it’s called so because you, as a

business or as a developer, do not need to think about servers or ops.

They are hidden behind an abstraction that makes them invisible to you.

Both servers and ops are managed by a vendor like Amazon, Google,

Microsoft, etc.

In the context of microservice architecture, FaaS is the concept that is

interesting for us.

Serverless providers

Currently, there are 4 major Clouds that allow us to use serverless

architecture:

• AWS Lambda - named as the first adopter of FaaS, easily integrates

 with the rest of Amazon Web Services such as SNS or S3.

• Google Cloud Functions - still in beta, allows us to run our functions in

 Google Cloud. The drawback is, it currently only supports Node.js and

 JavaScript.

• Azure Functions - supports the widest range of languages (JavaScript,

 C#, F#, Python, PHP, Bash, Batch, and PowerShell) and easily allows us

 to integrate with Github for storing our code.

• IBM Bluemix OpenWhisk - it uses the open-source Apache

 OpenWhisk project running on top of the IBM Bluemix infrastructure.

63Go to Table of Contents

• Serverless is a lie. The truth is that servers are still there, Ops are also

there. So why is this called „serverless” - it’s called so because you, as a

business or as a developer, do not need to think about servers or ops.

They are hidden behind an abstraction that makes them invisible to you.

Both servers and ops are managed by a vendor like Amazon, Google,

Microsoft, etc.

In the context of microservice architecture, FaaS is the concept that is

interesting for us.

Serverless providers

Currently, there are 4 major Clouds that allow us to use serverless

architecture:

• AWS Lambda - named as the first adopter of FaaS, easily integrates

 with the rest of Amazon Web Services such as SNS or S3.

• Google Cloud Functions - still in beta, allows us to run our functions in

 Google Cloud. The drawback is, it currently only supports Node.js and

 JavaScript.

• Azure Functions - supports the widest range of languages (JavaScript,

 C#, F#, Python, PHP, Bash, Batch, and PowerShell) and easily allows us

 to integrate with Github for storing our code.

• IBM Bluemix OpenWhisk - it uses the open-source Apache

 OpenWhisk project running on top of the IBM Bluemix infrastructure.

The most notable feature is that you can use your Docker images to run

as functions. A meaningful use-case of IBM OpenWhisk is a DarkVision

Application20, which shows how that technology can be used with

techniques like Visual Recognition, Speech to Text and Natural Language

Understanding.

Although it seems that we have a choice, we must keep in mind that

commonly, such services are tightly coupled with other services of the

particular Cloud, such as databases, message brokers or data storages.

Mostly, the wiser choice is just to use the serverless functionality of the

Cloud that we already use to run the rest of our microservices.

In the next sections, we’ll use AWS Lambda for all of the examples, but

the core concepts remain the same across all of the serverless providers.

In an FaaS approach, developers are writing code - and code only. They

do not need to care about the infrastructure, deployment, scalability, etc.

The code they write represents a simple and small function of the

application.

FaaS

20 https://github.com/IBM-Bluemix/openwhisk-darkvisionapp

64Go to Table of Contents

A trigger can be almost anything. Based on AWS Lambda, the most

popular FaaS service, the trigger might be:

• API call (any HTTP request).

• S3 bucket upload.

• New event in queue.

• Scheduled jobs.

• Other AWS Lambda functions.

• and many others, you can check it:

 http://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html.

 It is run in response to a trigger and can use external services:

Trigger

Function

External
service

Fig. 20: Basic function as a service architecture consists of only two elements: the function

to be run and a trigger to listen for. Usually the function is also connected to third-party

services like a database.

65Go to Table of Contents

A trigger can be almost anything. Based on AWS Lambda, the most

popular FaaS service, the trigger might be:

• API call (any HTTP request).

• S3 bucket upload.

• New event in queue.

• Scheduled jobs.

• Other AWS Lambda functions.

• and many others, you can check it:

 http://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html.

 It is run in response to a trigger and can use external services:

Trigger

Function

External
service

Fig. 20: Basic function as a service architecture consists of only two elements: the function

to be run and a trigger to listen for. Usually the function is also connected to third-party

services like a database.

• It should not access the disk - AWS allows using a temporary /tmp

 directory that allows storing 512MB of data.

• It should be stateless and share-nothing. You can imagine it as a server

 powered up and configured to only handle one request (and then

 destroyed).

• Concise - your function should not take too long to run (usually

 seconds, but up to 300 seconds for AWS Lambda).

Each function should comply with the following rules:

Once you have such a function, you just upload it to your service provider

and provide some basic configuration. From that moment, on each action

configured as a trigger, your function will be executed. The service

provider tracks how long it takes for your function to execute, and

multiplies the time by the amount of RAM configured (that's a limit you

can change). You pay for GB-seconds of execution. This means that if your

function is not executed, you do not pay anything and if your function is

executed thousands of times during one day, you pay only for the

GB-seconds your function took to run. There are no charges for scaling or

idle time.

The cost of one GB-second on AWS Lambda is currently $0.00001667 -

this means that if your application requires 1024MB of RAM, and runs

overall for 1,000,000 seconds (one million seconds), that is 277 hours

(over 11 days), you will be charged $16.77; There is also an additional

price of $0.20 per 1 million requests. It gets even better if you check out

66Go to Table of Contents

the free tier that Amazon offers. Each month you get 3,200,000 seconds

to run a function with a 128MB memory limit for free. That’s over 890h -

over 37 days!

I think the calculations above clearly show that you can gain a huge

benefit by moving some parts (or all parts) of your application to a FaaS

provider. You get the scalability and ops for free, as you do not need to

take care of it.

Internally, functions are run in small, ephemeral and stateless containers

that are spawn if your application needs to scale up.

You can find an interesting cost comparison to EC2 instances here:

https://www.trek10.com/blog/lambda-cost/.

Architecture

I won’t describe the architecture details of a serverless application in this

article as it should be quite straightforward when writing a microservice

application. The obvious and required step is to move as much

presentation and logic to the customer as possible. Usually, your

application front-end should be a mobile app or a single-page app.

On the back-end, you can start with a very simple architecture where the

function is triggered by an API call and then connects to a DynamoDB

instance (or any other on premise data source like MongoDB, MySQL) to

fetch/modify some data. Then, you can apply direct read access to some

data in your DynamoDB and allow clients to fetch the data directly,

67Go to Table of Contents

the free tier that Amazon offers. Each month you get 3,200,000 seconds

to run a function with a 128MB memory limit for free. That’s over 890h -

over 37 days!

I think the calculations above clearly show that you can gain a huge

benefit by moving some parts (or all parts) of your application to a FaaS

provider. You get the scalability and ops for free, as you do not need to

take care of it.

Internally, functions are run in small, ephemeral and stateless containers

that are spawn if your application needs to scale up.

You can find an interesting cost comparison to EC2 instances here:

https://www.trek10.com/blog/lambda-cost/.

Architecture

I won’t describe the architecture details of a serverless application in this

article as it should be quite straightforward when writing a microservice

application. The obvious and required step is to move as much

presentation and logic to the customer as possible. Usually, your

application front-end should be a mobile app or a single-page app.

On the back-end, you can start with a very simple architecture where the

function is triggered by an API call and then connects to a DynamoDB

instance (or any other on premise data source like MongoDB, MySQL) to

fetch/modify some data. Then, you can apply direct read access to some

data in your DynamoDB and allow clients to fetch the data directly,

Just a quick „hello world” example to show you how easily you can start

writing serverless applications:

Benefits

FaaS is easy to learn and implement, and it allows you to reduce the time

to market. It also allows you to reduce costs, and to scale easily. Each

function you write fits easily into a sprint, so it is easy to write serverless

applications in agile teams.

but handle all data-modifying requests using your function. You can also

introduce Event Sourcing very easily by having one function that records

an event and other functions that take the event in order to refresh your

read model.

You can also use FaaS to implement batch processing: split the stream of

data into smaller chunks and then send them to another function that will

run multiple instances of itself simultaneously. This allows you to process

the data much faster. FaaS is often used to do real-time log processing.

It’s easy!

Summary

exports.handler = (event, context, callback) => {
 callback(null, 'Hello World');
};

68Go to Table of Contents

Drawbacks

There might be a small vendor lock-in if you do not take this into

consideration and do not introduce proper architecture. You should be

aware of the communication overhead that is added by splitting the app

into such small services. The most common issues mentioned are

multitenancy (the same issue as with running containers on Amazon) and

cold start - when scaling up, it takes some time to handle the first request

by a new container. It might also be a bit harder to test such an

application.

Here are some use-cases that are interesting in my opinion:

• Mostly static pages, including eCommerce; You can host static content

 on a CDN server or add cache in front of your functions.

• Data stream analysis.

• Processing uploads - image/video thumbnails, etc.

• Actions users pay for. For example, adding watermarks to an ebook.

• Other cases when your application is not fully using the server capacity

 or you need to add scalability without investing much time and money.

Good use-cases

69Go to Table of Contents

Drawbacks

There might be a small vendor lock-in if you do not take this into

consideration and do not introduce proper architecture. You should be

aware of the communication overhead that is added by splitting the app

into such small services. The most common issues mentioned are

multitenancy (the same issue as with running containers on Amazon) and

cold start - when scaling up, it takes some time to handle the first request

by a new container. It might also be a bit harder to test such an

application.

Here are some use-cases that are interesting in my opinion:

• Mostly static pages, including eCommerce; You can host static content

 on a CDN server or add cache in front of your functions.

• Data stream analysis.

• Processing uploads - image/video thumbnails, etc.

• Actions users pay for. For example, adding watermarks to an ebook.

• Other cases when your application is not fully using the server capacity

 or you need to add scalability without investing much time and money.

Good use-cases

Just imagine that each of your microservices needs to be first built and

then deployed manually, not even mentioning running unit tests or any

kind of code-style tools. Having tens of those would be extremely

time-consuming and would often be a major bottleneck in the whole

development process.

Here comes the idea of Continuous Deployment - the thing that puts the

workflow of your whole IT department together. In Continuous

Deployment we can automate all things related with building Docker

containers, running unit and functional tests and even testing

performance of newly built services. At the end, if everything passes -

nothing prevents us from automatically deploying working solutions into

production.

The most commonly used software that handles the whole process is

Jenkins, Travis CI, Bamboo or CircleCI. We’ll show you how to do it using

Jenkins.

Going from the big picture, a common pipeline could look like this:

Continuous Deployment

Designing deployment pipeline

git push webhook deploy AWS

GitHub Jenkins

Fig. 21: Overview of our final Continuous Deployment pipeline.

70Go to Table of Contents

Most of the hard work is done by that nice looking guy, called Jenkins.

When someone pushes something to our Git repository (e.g. Github), the

webhook triggers a job inside our Jenkins instance. It can consist of the

following steps:

1. Build Docker image.

2. Run unit-tests inside the container.

3. Push image to our images repository (e.g. Docker Hub, Amazon ECR).

4. Deploy using Ansible or task schedulers like Amazon ECS.

 a. Run functional tests (Selenium).

 b. Run performance tests (JMeter).

After all this, we can set up a Slack notification that will inform us of

success or failure of the whole process. The important thing is, that we

should keep our Jenkins instance clean, so running all of the unit tests

should be done inside a Docker container.

Once we have the idea of our build process, we can code it using the

Jenkinsfile. It’s a file that describes our whole deployment pipeline. It

consists of stages and build steps. Mostly, at the end of the pipeline we

include post actions that should be fired when the build was successful or

failed.

We should keep this file in our application’s code repository - that way

developers can also work with it, without asking DevOps for changes in

the deployment procedure.

Coding our pipeline

71Go to Table of Contents

Most of the hard work is done by that nice looking guy, called Jenkins.

When someone pushes something to our Git repository (e.g. Github), the

webhook triggers a job inside our Jenkins instance. It can consist of the

following steps:

1. Build Docker image.

2. Run unit-tests inside the container.

3. Push image to our images repository (e.g. Docker Hub, Amazon ECR).

4. Deploy using Ansible or task schedulers like Amazon ECS.

 a. Run functional tests (Selenium).

 b. Run performance tests (JMeter).

After all this, we can set up a Slack notification that will inform us of

success or failure of the whole process. The important thing is, that we

should keep our Jenkins instance clean, so running all of the unit tests

should be done inside a Docker container.

Once we have the idea of our build process, we can code it using the

Jenkinsfile. It’s a file that describes our whole deployment pipeline. It

consists of stages and build steps. Mostly, at the end of the pipeline we

include post actions that should be fired when the build was successful or

failed.

We should keep this file in our application’s code repository - that way

developers can also work with it, without asking DevOps for changes in

the deployment procedure.

Coding our pipeline

Here is a sample Jenkinsfile built on the basis of the previously mentioned

steps. As we can see, the final step is to run another Jenkins job named

deploy. Jobs can be tied together to be more reusable - that way we can

deploy our application without having to run all of the previous steps.

#!groovy
pipeline {
 agent any
 stages {
 stage('Build Docker') {
 steps {
 sh "docker build ..."
 }
 }
 stage('Push Docker Image') {
 steps {
 sh 'docker push ...'
 }
 }
 stage('Deploy') {
 steps {
 build job: 'deploy'
 }
 }
 }

 post {
 success {
 slackSend color: 'good', message: "Build Success"
 }
 failure {
 slackSend color: 'danger', message: "Build Failed"
 }
 }
}

72Go to Table of Contents

Related
technologies

73Go to Table of Contents

Related
technologies

Sylius

Microservices based eCommerce platforms

There are major open-source platforms that were built using the

Microservices approach by design. This section tries to list those that we

think could be used as a reference for designing your architecture - or

even better - could be used as a part of it.

Sylius is the first Open Source eCommerce platform constructed from

standalone components. What does it mean in practice? Every aspect of

the shopping process is handled by individual PHP libraries. While the

project itself provides a complete shop solution with a REST API, these

decoupled components can be used separately to build Microservice

applications.

Let’s say we need to have two services for handling a Product Catalog and

Promotions, respectively. The solution would be to take the two

components and use them to develop two standalone applications.

Before Sylius, you would have needed to write everything from scratch or

strip the functionality from an existing eCommerce software.

On top of that, Sylius is based on the highly scalable Symfony framework,

which integrates with a wide range of caching solutions, from Redis,

Memcache to Varnish. It also provides tools for RAPID API development

with JSON/XML support, which allows you to prototype your microservice

in a much shorter timeframe and lower the costs of development.

74

Spryker

Fig. 14: Backend for frontends architecture is about minimizing the number of backend

calls and optimizing the interfaces to a supported device.

Spryker is a “Made in Germany” eCommerce platform created with a

SOA approach with separated Backend (ZED) and Frontend (YVES)

applications. The platform is designed with high throughput and

scalability in mind. It’s not the classic microservices approach - you can

learn more about Spryker’s founder’s view on that in Appendix 1 to this

book.

The Spryker source code is available on Github:

https://github.com/spryker. The platform comes with an interesting

licensing model - per developer seat (not related to revenues, servers

etc…).

Session Storage

PostgreSQLMySQLQueue

KV Storage

REST API

Mobile
SDK

RPC

ETL

Elasticsearch

Payment

Mail

PIM

ERP

YVES
Shop

front end

ZED
Back end

BI
Business

Intelligence

When you have your development setup up and running, it is also quite

easy to push your application to a staging server. In most projects I know,

this process was pretty straight-forward and required only a few changes.

The main difference is in the so called volumes - files/directories that are

shared between your local disk and the disk inside a container. When

developing an application, you usually setup containers to share all

project files with Docker so you do not need to rebuild the image after

each change. On pre-production and production servers, project files

should live inside the container/image and should not be mounted on

your local disk.

The other common change applies to ports. When using Docker for

development, you usually bind your local ports to ports inside the

container, i.e. your local 8080 port to port 80 inside the container. This

makes it impossible to test scalability of such containers and makes the

URI look bad (no one likes ports inside the URI).

75

Spryker

Fig. 14: Backend for frontends architecture is about minimizing the number of backend

calls and optimizing the interfaces to a supported device.

Spryker is a “Made in Germany” eCommerce platform created with a

SOA approach with separated Backend (ZED) and Frontend (YVES)

applications. The platform is designed with high throughput and

scalability in mind. It’s not the classic microservices approach - you can

learn more about Spryker’s founder’s view on that in Appendix 1 to this

book.

The Spryker source code is available on Github:

https://github.com/spryker. The platform comes with an interesting

licensing model - per developer seat (not related to revenues, servers

etc…).

Session Storage

PostgreSQLMySQLQueue

KV Storage

REST API

Mobile
SDK

RPC

ETL

Elasticsearch

Payment

Mail

PIM

ERP

YVES
Shop

front end

ZED
Back end

BI
Business

Intelligence

When you have your development setup up and running, it is also quite

easy to push your application to a staging server. In most projects I know,

this process was pretty straight-forward and required only a few changes.

The main difference is in the so called volumes - files/directories that are

shared between your local disk and the disk inside a container. When

developing an application, you usually setup containers to share all

project files with Docker so you do not need to rebuild the image after

each change. On pre-production and production servers, project files

should live inside the container/image and should not be mounted on

your local disk.

The other common change applies to ports. When using Docker for

development, you usually bind your local ports to ports inside the

container, i.e. your local 8080 port to port 80 inside the container. This

makes it impossible to test scalability of such containers and makes the

URI look bad (no one likes ports inside the URI).

Open Loyalty

Fig. 23: Open Loyalty architecture - each application works as separate service.

A loyalty/rewards program that can be easily integrated with eCommerce

and/or POS. It’s interesting because of the CDB module (Central Data

Base) which is responsible for gathering a 360deg. view of each customer.

Open Loyalty leverages the CQRS and Event Sourcing design patterns.

You can use it as a headless CRM leveraging a REST API (with JWT based

authorization).

We’ve seen many cases of Open Loyalty being used as CRM and

marketing automation.

ON-LINE

CUSTOMER VIEW

eCommerce

Client Cockpit

eCommerce Cockpit

OFF-LINE

OFF-LINE
DATA

E-MAIL, SMS, PUSH NOTIFICATION

POS

POS cockpit

Mobile Cockpit*

INTERNAL

ADMIN VIEW

ERP

Admin Cockpit

SaaS

Marketing Automation

Old Components

New Components

* Mobile app needs to be developed.

AdminCustomer

Merchant

Docker has some downsides too. The first one you might notice is that it

76Go to Table of Contents

Technologies that empower the microservices architecture

The platform is open source and you can find the code on Github

(https://github.com/DivanteLtd/open-loyalty).

More information: http://openloyalty.io.

22 https://www.pimcore.org/docs/latest/Web_Services/index.html

Pimcore is an Enterprise Content platform for:

• CMS - content management.

• PIM - master data management for products.DAM - digital assets

management for attachments, videos and pictures.

• eCommerce Framework - for building checkout features and managing

orders.

The Pimcore REST API22 can be used to make Pimcore an eCommerce

backend for Mobile applications or to extend existing eCommerce

platform catalog capabilities, etc.

It’s a open source technology developed in Austria with a really active

community and version 5.0 (based on Symfony Framework) on the

horizon.

More on Pimcore: http://pimcore.org.

http://pimcore.org

77Go to Table of Contents

Technologies that empower the microservices architecture

The platform is open source and you can find the code on Github

(https://github.com/DivanteLtd/open-loyalty).

More information: http://openloyalty.io.

22 https://www.pimcore.org/docs/latest/Web_Services/index.html

Pimcore is an Enterprise Content platform for:

• CMS - content management.

• PIM - master data management for products.DAM - digital assets

management for attachments, videos and pictures.

• eCommerce Framework - for building checkout features and managing

orders.

The Pimcore REST API22 can be used to make Pimcore an eCommerce

backend for Mobile applications or to extend existing eCommerce

platform catalog capabilities, etc.

It’s a open source technology developed in Austria with a really active

community and version 5.0 (based on Symfony Framework) on the

horizon.

More on Pimcore: http://pimcore.org.

Technologies that empower the microservices
architecture

Ansible

The microservices architecture introduces new concepts that sometimes

also require new or different tools compared to the monolithic approach.

Also, keeping in mind, that this approach may lead to more complexity of

our platform, we should automate as many things as we can from the

beginning.

We’ll show you some of the most widely used tools and technologies that

could empower your development by making things easier, more

automated and are very suitable when diving into Microservices.

DevOps is an agile way to maintain software. It emphasizes

communication between IT and SD23.

Ansible is a tool for automation of DevOps routines. Ansible uses an

agentless architecture which means that no additional software is needed

to be installed on target machines; communication is done by issuing

plain SSH commands. It automates applications deployment,

configuration management, workflow orchestration and even cloud

provisioning – all in one tool. Shipping with nearly 200 modules in the

core distribution, Ansible provides a vast library of building blocks for

managing all kinds of IT tasks.

23 https://pl.wikipedia.org/wiki/DevOps

78Go to Table of Contents

Ansible composes each server (or group of them, named inventory) from

reusable roles. We can define ours, such as Nginx, PHP or Magento, and

then reuse them for different machines. Roles are next tied together in

“Playbooks” that describe the full deployment process.

There’re plenty of well-written, already made Playbooks that you could

adapt and reuse for configuring your infrastructure. As an example, when

installing Magento you could use:

https://github.com/aslaen/AnsiblePlaybooks/tree/master/ansible-magen

to-lemp.

To configure our first servers with the Nginx web server and PHP, we

should first create two roles that will be next used in a final Playbook.

1. Nginx:
in ./roles/nginx/tasks/main.yml
- name: Ensures that nginx is installed
 apt: name=nginx state=present

- name: Creates nginx configuration from Jinja template file
 template:
 src: "/etc/nginx/nginx.conf.j2"
 dest: "/etc/nginx/nginx.conf"

79Go to Table of Contents

Ansible composes each server (or group of them, named inventory) from

reusable roles. We can define ours, such as Nginx, PHP or Magento, and

then reuse them for different machines. Roles are next tied together in

“Playbooks” that describe the full deployment process.

There’re plenty of well-written, already made Playbooks that you could

adapt and reuse for configuring your infrastructure. As an example, when

installing Magento you could use:

https://github.com/aslaen/AnsiblePlaybooks/tree/master/ansible-magen

to-lemp.

To configure our first servers with the Nginx web server and PHP, we

should first create two roles that will be next used in a final Playbook.

1. Nginx:
in ./roles/nginx/tasks/main.yml
- name: Ensures that nginx is installed
 apt: name=nginx state=present

- name: Creates nginx configuration from Jinja template file
 template:
 src: "/etc/nginx/nginx.conf.j2"
 dest: "/etc/nginx/nginx.conf"

2. PHP:
in ./roles/php/tasks/main.yml
- name: Ensures that dotdeb APT repository is added
 apt_repository: repo="deb http://packages.dotdeb.org
jessie all" state=present

- name: Ensures that dotdeb key is present
 apt_key: url=https://www.dotdeb.org/dotdeb.gpg
state=present

- name: Ensures that APT cache is updated
 apt: update_cache=yes

- name: Ensures that listed packages are installed
 apt: pkg="{{ item }}"
 with_items:
 - php7.0-cli
 - php7.0-curl
 - php7.0-fpm

in ./php-nodes.yml
- hosts: php-nodes
 roles:
 - nginx
 - php

Having these roles, we can now define a playbook that will combine them

to set-up our new server with nginx and php installed:

80Go to Table of Contents

in ./inventory
[php-nodes]
php-node1.acme.org
php-node2.acme.org

The last thing we need to do is to tell Ansible the hostnames of our

servers:

$ ansible-playbook -i inventory php-nodes.yml -b

Deployment is now as easy as typing a single shell command that will tell

Ansible to run the php-nodes.yml playbook on hosts from the inventory

file as root (-b):

As we defined two hosts in a “php-nodes” group, Ansible is smart

enough to run the Playbook concurrently for every server. That way we’re

able to make a deployment on a bigger group of machines at once

without wasting time doing it one-by-one.

React is an open source user interface (UI) component library. It was

developed at Facebook to facilitate creation of interactive web interfaces.

It is often referred to as the V in the “MVC” architecture as it makes no

assumptions about the rest of your technology stack.

ReactJS

81Go to Table of Contents

in ./inventory
[php-nodes]
php-node1.acme.org
php-node2.acme.org

The last thing we need to do is to tell Ansible the hostnames of our

servers:

$ ansible-playbook -i inventory php-nodes.yml -b

Deployment is now as easy as typing a single shell command that will tell

Ansible to run the php-nodes.yml playbook on hosts from the inventory

file as root (-b):

As we defined two hosts in a “php-nodes” group, Ansible is smart

enough to run the Playbook concurrently for every server. That way we’re

able to make a deployment on a bigger group of machines at once

without wasting time doing it one-by-one.

React is an open source user interface (UI) component library. It was

developed at Facebook to facilitate creation of interactive web interfaces.

It is often referred to as the V in the “MVC” architecture as it makes no

assumptions about the rest of your technology stack.

ReactJS

With React, you compose your application out of components. It

embraces what is called component-based architecture - a declarative

approach to developing web interfaces where you describe your UI with a

tree of components. React components are highly encapsulated,

concern-specific, single-purpose blocks. For example, there could be

components for address or zip code that together create a form. Such

components have both a visual representation and dynamic logic.

Some components can even talk to the server on their own, e.g., a form

that submits its values to the server and shows confirmation on success.

Such interfaces are easier to reuse, refactor, test and maintain. They also

tend to be faster than their imperative counterparts as React - being

responsible for rendering your UI on screen - performs many

optimisations and batches updates in one go.

It’s most commonly used with Webpack - a module bundler for modern

Javascript. One of its features - code-splitting - allows you to generate

multiple Javascript bundles (entry points) allowing you to send clients

only the part of Javascript that is required to render that particular screen.

One of the interesting movements in frontend-development nowadays is

an Isomorphic approach. Which means that both frontend and backend

are sharing the same code. In this particular case, frontend app can be

created in React and backend code run by NodeJS.

NodeJS is a popular (de facto industry standard) JavaScript engine that

NodeJS

82Go to Table of Contents

can be used server-side and in CLI environments. There are plenty of

JavaScript Web frameworks available, like Express

(https://expressjs.com/) and HapiJS (https://hapijs.com/) - to name but

two. As NodeJS is built around Google’s V8 JavaScript engine (initially

developed as Chrome/Chromium JS engine) it’s blazingly fast. Node

leverages the events-polling/non-blocking IO architecture to provide

exceptional performance results and optimizes CPU utilization (for more,

read about the c10k problem: http://www.kegel.com/c10k.html).

interoperate with frontend JS code very easily. There is an emerging trend

of building Universal apps - which more or less means that the same code

base is in use on the frontend and backend. One of the most interesting

and popular frameworks for building Isomorphic apps is React Js

(https://facebook.github.io/react/).

NodeJS is used as a foundation for many CLI tools - starting from the

most popular “npm” (Node Package Manager), followed by a number of

tools like Gulp, Yeoman and others.

Request
Node.js Server

Request
Event
Loop

Delegate

Non-
blocking

IO

Single
Thread

Requests

Requests

POSIX
Async

Threads

Fig. 24: Node.js request flow. Node leverages Event polling and maximizing the memory

and CPU usage on running parallel operations inside single threaded environment.

http://www.kegel.com/c10k.html

83Go to Table of Contents

can be used server-side and in CLI environments. There are plenty of

JavaScript Web frameworks available, like Express

(https://expressjs.com/) and HapiJS (https://hapijs.com/) - to name but

two. As NodeJS is built around Google’s V8 JavaScript engine (initially

developed as Chrome/Chromium JS engine) it’s blazingly fast. Node

leverages the events-polling/non-blocking IO architecture to provide

exceptional performance results and optimizes CPU utilization (for more,

read about the c10k problem: http://www.kegel.com/c10k.html).

interoperate with frontend JS code very easily. There is an emerging trend

of building Universal apps - which more or less means that the same code

base is in use on the frontend and backend. One of the most interesting

and popular frameworks for building Isomorphic apps is React Js

(https://facebook.github.io/react/).

NodeJS is used as a foundation for many CLI tools - starting from the

most popular “npm” (Node Package Manager), followed by a number of

tools like Gulp, Yeoman and others.

Request
Node.js Server

Request
Event
Loop

Delegate

Non-
blocking

IO

Single
Thread

Requests

Requests

POSIX
Async

Threads

Fig. 24: Node.js request flow. Node leverages Event polling and maximizing the memory

and CPU usage on running parallel operations inside single threaded environment.

JavaScript is the rising star of programming languages. It can even be

used for building desktop applications - like Visual Studio Code or Vivaldi

web browser (!); these tools are coded in 100% pure JavaScript - but for

the end users, nothing differs from standard desktop applications. And

they’re portable between operating systems by default!

On the server side, NodeJS is very often used as an API platform because

of the platform speed. The event polling architecture is ideal for rapid but

short-lived requests.

Using “npm” one can install almost all available libraries and tools for the

JS stack - including frontend and backend packages. As most modern

libraries (eg. GraphQL, Websockets) have Node bindings, and all modern

cloud providers support this technology as well, it’s a good choice for

backend technology backing microservices.

Famous NodeJS users

Node.js helps us solve this (boundary between the browser
and server) by enabling both the browser and server
applications to be written in JavaScript. It unifies our
engineering specialties into one team which allows us to
understand and react to our users’ needs at any level in the
technology stack.

— Jeff Harrel, Senior Director of Payments Products and

Engineering at PayPal24

24 https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/

84Go to Table of Contents

LinkedIn

One reason was scale. The second is, if you look at Node, the
thing it’s best at doing is talking to other services.

— Mobile Development Lead, Kiran Prasad25

eBay

We had two primary requirements for the project. First, was to
make the application as real time as possible–i.e., maintain
live connections with the server. Second, was to orchestrate a
huge number of eBay-specific services that display
information on the page–i.e.

— Senthil Padmanabhan, Principal Web Engineer at eBay26

25 http://venturebeat.com/2011/08/16/linkedin-node/

26 http://www.ebaytechblog.com/2013/05/17/how-we-built-ebays-first-node-js-application/

Other projects that leverage NodeJS:

Uber

https://nodejs.org/static/documents/casestudies/Nodejs-at-Uber.pdf

Netflix

http://thenewstack.io/netflix-uses-node-js-power-user-interface/

Groupon

http://www.datacenterknowledge.com/archives/2013/12/06/need-speed-groupon-m

igrated-node-js/

This powerful tool is too commonly used only for generating nice-looking

documentation for APIs. Basically, swagger is for defining the API

interfaces using simple, domain-driven JSON language.

The editor is only one tool from the toolkit but other ones are:

• Codegen - for generating the source code scaffold for your API -

 available in many different languages (Node, Ruby, .NET, PHP).

• UI - most known swagger tool for generating useful and nice looking

 interactive documentation.

Everything starts with a specification file describing all the Entities and

interfaces for the REST API. Please take a look at the example below:

Swagger

{
 "get": {
 "description": "Returns pets based on ID",
 "summary": "Find pets by ID",
 "operationId": "getPetsById",
 "produces": [
 "application/json",
 "text/html"
],
 "responses": {
 "200": {
 "description": "pet response",
 "schema": {

85Go to Table of Contents

LinkedIn

One reason was scale. The second is, if you look at Node, the
thing it’s best at doing is talking to other services.

— Mobile Development Lead, Kiran Prasad25

eBay

We had two primary requirements for the project. First, was to
make the application as real time as possible–i.e., maintain
live connections with the server. Second, was to orchestrate a
huge number of eBay-specific services that display
information on the page–i.e.

— Senthil Padmanabhan, Principal Web Engineer at eBay26

25 http://venturebeat.com/2011/08/16/linkedin-node/

26 http://www.ebaytechblog.com/2013/05/17/how-we-built-ebays-first-node-js-application/

Other projects that leverage NodeJS:

Uber

https://nodejs.org/static/documents/casestudies/Nodejs-at-Uber.pdf

Netflix

http://thenewstack.io/netflix-uses-node-js-power-user-interface/

Groupon

http://www.datacenterknowledge.com/archives/2013/12/06/need-speed-groupon-m

igrated-node-js/

This powerful tool is too commonly used only for generating nice-looking

documentation for APIs. Basically, swagger is for defining the API

interfaces using simple, domain-driven JSON language.

The editor is only one tool from the toolkit but other ones are:

• Codegen - for generating the source code scaffold for your API -

 available in many different languages (Node, Ruby, .NET, PHP).

• UI - most known swagger tool for generating useful and nice looking

 interactive documentation.

Everything starts with a specification file describing all the Entities and

interfaces for the REST API. Please take a look at the example below:

Swagger

{
 "get": {
 "description": "Returns pets based on ID",
 "summary": "Find pets by ID",
 "operationId": "getPetsById",
 "produces": [
 "application/json",
 "text/html"
],
 "responses": {
 "200": {
 "description": "pet response",
 "schema": {

86Go to Table of Contents

 "type": "array",
 "items": {
 "$ref": "#/definitions/Pet"
 }
 }
 },

"default": {
 "description": "error payload",
 "schema": {
 "$ref": "#/definitions/ErrorModel"
 }
 }
 }
 },
 "parameters": [
 {
 "name": "id",
 "in": "path",
 "description": "ID of pet to use",
 "required": true,
 "type": "array",
 "items": {
 "type": "string"
 },
 "collectionFormat": "csv"
 }
]
}

$ref relates to other entities described in the file (data models, structures

etc). You can use primitives as the examples and return values (bool,

string…) as well as hash-sets, compound objects and lists. Swagger allows

you to specify the validation rules and authorization schemes (basic auth,

oauth, oauth2).

87Go to Table of Contents

 "type": "array",
 "items": {
 "$ref": "#/definitions/Pet"
 }
 }
 },

"default": {
 "description": "error payload",
 "schema": {
 "$ref": "#/definitions/ErrorModel"
 }
 }
 }
 },
 "parameters": [
 {
 "name": "id",
 "in": "path",
 "description": "ID of pet to use",
 "required": true,
 "type": "array",
 "items": {
 "type": "string"
 },
 "collectionFormat": "csv"
 }
]
}

$ref relates to other entities described in the file (data models, structures

etc). You can use primitives as the examples and return values (bool,

string…) as well as hash-sets, compound objects and lists. Swagger allows

you to specify the validation rules and authorization schemes (basic auth,

oauth, oauth2).

{
 "oauth2": {
 "type": "oauth2",
 "scopes": [
 {
 "scope": "email",
 "description": "Access to your email address"
 },
 {
 "scope": "pets",
 "description": "Access to your pets"
 }
],
 "grantTypes": {
 "implicit": {
 "loginEndpoint": {
 "url":
"http://petstore.swagger.wordnik.com/oauth/dialog"
 },
 "tokenName": "access_token"
 },
 "authorization_code": {
 "tokenRequestEndpoint": {
 "url":
"http://petstore.swagger.wordnik.com/oauth/requestToken",
 "clientIdName": "client_id",
 "clientSecretName": "client_secret"
 },
 "tokenEndpoint": {
 "url":
"http://petstore.swagger.wordnik.com/oauth/token",
 "tokenName": "access_code"
 }
 }
 }
 }
}

88Go to Table of Contents

Last but not least swagger the OpenAPI specification format has become

more and more a standard and should be considered when starting new

API projects. It’s supported by many external tools and platforms -

including Amazon API Gateway27.

The simplest way to start with a microservices approach in eCommerce is

often to delegate the search feature to an external tool like

Elasticearch/Solr or to SaaS solutions like Klevu.

Elasticsearch is a search engine available via REST API (updates, reads,

searches…). It can be a micro service for catalog operations in

eCommerce and it’s often used to leverage the NoSQL scalability of its

internal document database over standard SQL solutions.

Elasticsearch

27 https://m.signalvnoise.com/the-majestic-monolith-29166d022228#.90yg49e3j

Fig. 25: Swagger UI generates a nice-looking specification for your API along with a

“try-it-out” feature for executing API calls directly from the browser.

89Go to Table of Contents

Last but not least swagger the OpenAPI specification format has become

more and more a standard and should be considered when starting new

API projects. It’s supported by many external tools and platforms -

including Amazon API Gateway27.

The simplest way to start with a microservices approach in eCommerce is

often to delegate the search feature to an external tool like

Elasticearch/Solr or to SaaS solutions like Klevu.

Elasticsearch is a search engine available via REST API (updates, reads,

searches…). It can be a micro service for catalog operations in

eCommerce and it’s often used to leverage the NoSQL scalability of its

internal document database over standard SQL solutions.

Elasticsearch

27 https://m.signalvnoise.com/the-majestic-monolith-29166d022228#.90yg49e3j

Fig. 25: Swagger UI generates a nice-looking specification for your API along with a

“try-it-out” feature for executing API calls directly from the browser.

Elasticsearch supports full-text search with faceted filtering and support

for most major languages with stemming and misspelling correction

features.

There are plenty of modules to Magento and other platforms that

synchronize product feeds to ES and then provide catalog browsing via

ES web-services - without touching the relational database.

Elasticsearch is even used for log analysis with tools like Kibana and

Logstash. With its ease of use, performance and scalability characteristics,

it is actually best choice for most eCommerce and content related sites.

Elastic is well supported by cloud providers like Amazon and supports

Docker.

Modeling a great REST API is hard - using and supporting changes in an

API over time is sometimes even harder. GraphQL (http://graphql.org) is

a query language; a proposition to a new way of thinking about APIs.

Widely used REST APIs are organized around HTTP endpoints. GraphQL

APIs are different; they are built in terms of types and fields, and relations

between them. It gives clients the ability to ask for what they need directly

instead of many different REST requests. All the necessary data will be

queried and returned with a single call.

GraphQL

90Go to Table of Contents

Data definition:

type Project {
 name: String
 tagline: String
 contributors: [User]
}

Sample query:

GraphQL was developed internally by Facebook in 2012 and

open-sourced 3 years later with Relay, a JavaScript framework for building

data-driven React applications. Nowadays, the GraphQL ecosystem is

growing rapidly; both server and frontend libraries are available for many

programming languages and developers have dedicated tools for Graph-

QL API design. Many other organizations, including Github, Pinterest and

Shopify are adopting GraphQL because of its benefits.

{
 project(name: "GraphQL") {
 tagline
 }
}

Query result:

{
 "project": {
 "tagline": "A query language for APIs"
 }
}

91Go to Table of Contents

Data definition:

type Project {
 name: String
 tagline: String
 contributors: [User]
}

Sample query:

GraphQL was developed internally by Facebook in 2012 and

open-sourced 3 years later with Relay, a JavaScript framework for building

data-driven React applications. Nowadays, the GraphQL ecosystem is

growing rapidly; both server and frontend libraries are available for many

programming languages and developers have dedicated tools for Graph-

QL API design. Many other organizations, including Github, Pinterest and

Shopify are adopting GraphQL because of its benefits.

{
 project(name: "GraphQL") {
 tagline
 }
}

Query result:

{
 "project": {
 "tagline": "A query language for APIs"
 }
}

Distributed systems require new levels of application monitoring and

logging. With monolithic applications you can track one log-file for events

(usually) and use some Zabbix triggers to get a complete view of a

server's state, application errors, etc.

With distributed services you have to track a whole bunch of new metrics:

• Network latency - which can ruin the communication between crucial

parts.

• Application errors on the service level and violation of service-contracts.

• Performance metrics.

• Security violations.

To make it even worse, you must track all those parameters across several

clusters in real time. Without such a level of monitoring, no high

availability can be achieved and the distributed system is even more

vulnerable to downtime than a single monolithic application.

The good news is that nowadays there are plenty of tools to measure

web-app performance and availability. One of the most interesting is

Graylog (http://graylog.org).

Used by many microservice predecessors like LinkedIn, eBay, and Twilio,

Graylog centralizes logs into streams.

Distributed logging and monitoring

Graylog

92Go to Table of Contents

29 http://www.fluentd.org/

Graylog is easy to integrate, leveraging HTTP communication, syslog

(with UDP support for minimum network load) or third party log collectors

like fluentd29. It can be integrated with e-mail, SMS, and Slack alerts.

Fig. 26: In graylog you’ve got access to messages in real time with alerts configured for

each separate message stream.

Fig. 27: Alerts configuration is a basic feature for providing HA to your microservices

ecosystem.

93Go to Table of Contents

29 http://www.fluentd.org/

Graylog is easy to integrate, leveraging HTTP communication, syslog

(with UDP support for minimum network load) or third party log collectors

like fluentd29. It can be integrated with e-mail, SMS, and Slack alerts.

Fig. 26: In graylog you’ve got access to messages in real time with alerts configured for

each separate message stream.

Fig. 27: Alerts configuration is a basic feature for providing HA to your microservices

ecosystem.

Distributed systems require new levels of application monitoring and

logging. With monolithic applications you can track one log-file for events

(usually) and use some Zabbix triggers to get a complete view of a

server's state, application errors, etc.

Whereas Graylog is focused around application logging, New Relic is

centered around the performance and numeric metrics of your

applications and servers: network response times, CPU load, HTTP

response times, network graphs, as well as application stack traces with

debugging information.

New Relic works as a system daemon with native libraries for many

programming languages and servers (PHP, NodeJS…). Therefore, it can

be used even in production where most other debugging tools come with

too much significant overhead. We used to work with New Relic on

production clusters - even with applications with millions of unique users

per month and dozens of servers in a cluster.

We used to implement our own custom metrics to monitor response

times from 3rd party services and integrations. Similarly to Graylog, New

Relic can set up dashboards and alerts.

New Relic

94Go to Table of Contents

Fig. 28: The coolest feature of New Relic is stack-trace access - on production, in real time.

95Go to Table of Contents

Fig. 28: The coolest feature of New Relic is stack-trace access - on production, in real time.

Fig. 29: New Relic Insights Data Explorer with sample plot.

New Relic Insights

Data visualization tools and customizable dashboards, allow you to

observe business analytics data and performance information at the same

time.

By combining application, environment and business data - like

transactions, pageviews and order details - into one reporting tool, you

can more precisely see how your app performance affects your business.

96Go to Table of Contents

Fig. 30: New Relic usage of NRQL with sample output.

New Relic Insights NRQL Language

You can also use the NRQL (New Relic Query Language) with syntax

similar to SQL language to explore all collected data and create

application metric reports.

For example, you can attach customer group IDs to order requests to

check if particular customer groups have an unusually bad experience

during the order process.

97Go to Table of Contents

Fig. 30: New Relic usage of NRQL with sample output.

New Relic Insights NRQL Language

You can also use the NRQL (New Relic Query Language) with syntax

similar to SQL language to explore all collected data and create

application metric reports.

For example, you can attach customer group IDs to order requests to

check if particular customer groups have an unusually bad experience

during the order process.

Fig. 31: The New Relic Browser module displays a list of javascript issues on front-end

application.

Take care of the front-end using New Relic Browser

Another powerful feature allows you to easily detect any javascript issue

on the front-end of your application. Additionally, New Relic will show you

a detailed stack trace and execution profile.

98Go to Table of Contents

Case Studies:

Re-architecting
the monolith

99Go to Table of Contents

Case Studies:

Re-architecting
the monolith

One of our B2B clients came to us with the following issues to be

solved:

• While on Magento 1 with SKUs catalog exceeding 1M products -

 performance bottlenecks relating to catalog and catalog updates

 became hard to work-around.

• Monolithic architecture, strongly tied to external systems (such as CRM,

 ERP, WMS) hindered changes and development of new features.

• CRM that became the SPoF (Single Point of Failure). Pivotal CRM was in

 charge of too many key responsibilities including per-customer pricing,

 cart management and promotions.

• Serious amount of technological debt due to legacy code.

• Scalability problems - the platform should be able to handle a new

 business model that requires broadening the offer and entering new

 markets.

The online platform was generating 100M+ EUR revenue/year at the

time. The challenge was a serious one.

Case Studies: Re-architecting the Monolith

Here I’ll briefly present two case studies of the microservices evolution

which I’ve been able to observe while working at Divante.

B2B

100

The architecture of this system resembled a "death star". However, its

complexity was not between microservices, but between external

systems.

The first instinct was to move the site 1:1 from legacy Magento 1 to a new

platform. OroCommerce and Magento 2 were considered.

The work on collecting business requirements from stakeholders inside

the company and putting them into the Business Requirements

Document (BRD) was quickly started. We formulated nearly 1,000

business requirements.Then we mapped them into features. Finally, we

scored each available platform on its ability to meet the requirements:

• Functionality available out of the box.

• Functionality after customization.

• Functionality requiring additional/external modules.

• New features.

We double-checked both platforms in terms of technical solutions,

scalability, performance, possibility of modification and the possibility of

further development.

During the analysis, we realized that it would be somewhat risky to collect

all the requirements for such a huge platform right away. We felt that

before we had finished analyzing the requirements, they would have

changed a few times already. Brief research showed us that none of the

systems were capable of meeting all the specific requirements, both

functional and non-functional. We realized this was not the right approach

and could lead us back to where we started - a monolithic application.

101Go to Table of Contents

Before you decide to take a similar step (to go along with a ready-made

platform in the center of a microservices eco-system), look at the pros &

cons of this approach.

Pros & Cons of choosing an end-2-end platform:

Pros:

• Rapid development and time to market.

• It’s usually a stable, well-tested product.

• A community that will help in solving many problems.

• The possibility to use a large base of ready-made, fully-featured

 modules (Magento Marketplace).

• Official support from the software provider.

• Official updates, security patches.

Cons:

• It’s still a monolithic application that sooner or later will lead us to the

 starting point - problems with scalability and maintenance.

• Very high licensing costs for the Enterprise version.

The architecture of this system resembled a "death star". However, its

complexity was not between microservices, but between external

systems.

The first instinct was to move the site 1:1 from legacy Magento 1 to a new

platform. OroCommerce and Magento 2 were considered.

The work on collecting business requirements from stakeholders inside

the company and putting them into the Business Requirements

Document (BRD) was quickly started. We formulated nearly 1,000

business requirements.Then we mapped them into features. Finally, we

scored each available platform on its ability to meet the requirements:

• Functionality available out of the box.

• Functionality after customization.

• Functionality requiring additional/external modules.

• New features.

We double-checked both platforms in terms of technical solutions,

scalability, performance, possibility of modification and the possibility of

further development.

During the analysis, we realized that it would be somewhat risky to collect

all the requirements for such a huge platform right away. We felt that

before we had finished analyzing the requirements, they would have

changed a few times already. Brief research showed us that none of the

systems were capable of meeting all the specific requirements, both

functional and non-functional. We realized this was not the right approach

and could lead us back to where we started - a monolithic application.

102Go to Table of Contents

• Large platforms require specialists with specific skills for a particular

 system who can be difficult to acquire.

• Ready-made functionalities often requires serious modifications to fully

 adapt them, which can lead to incompatibility with the base system - no

 updates or patches.

• They often provide outdated solutions, limiting the introduction of

 modern technologies.

A New approach

Eventually, after conducting a feasibility study, we suggested that our

client use a more optimal way of solving the problem.

The fundamental assumption was to abandon migration to a new

platform and change the architecture by deconstructing the current

system and deploying it as an eco-system of distributed microservices. In

order to succeed, we needed an effective analysis and implementation

process.

103Go to Table of Contents

System
architecture

analysis
(decomposition)

IT Architects
team

Microservices
implementation

team

Magento
developers

team

Microservice X
architecture

analysis

Microservice Y
architecture

analysis

Microservice Z
architecture

analysis

Microservice X
implementation

Microservice X
adoption on

Magento
...

Microservice Y
implementation

Microservice Z
implementation

...

...

Fig. 7: Agile analysis and implementation process to achieve goals.

The first step of the "architecture analysis" process was the development

of a high-level architecture of the entire system by a team of architects,

focused on service responsibilities. The results of their work included:

• Key business processes supported by the system.

• Goals and requirements for scalability, security, performance, SLA and

 potential development directions.

• Identified risks.

• Block diagram of disclosed microservices:

 • Defined scope and responsibility of each service.

 • PaReveal patterns of integration between services, taking into

 account emergency situations handling, avoiding SPoF.

• Defined events and business objects.

• High-level architecture diagram of the system.

The architects worked together along with the client. The client’s domain

experts were engaged in session-based workshops using the event

• Large platforms require specialists with specific skills for a particular

 system who can be difficult to acquire.

• Ready-made functionalities often requires serious modifications to fully

 adapt them, which can lead to incompatibility with the base system - no

 updates or patches.

• They often provide outdated solutions, limiting the introduction of

 modern technologies.

A New approach

Eventually, after conducting a feasibility study, we suggested that our

client use a more optimal way of solving the problem.

The fundamental assumption was to abandon migration to a new

platform and change the architecture by deconstructing the current

system and deploying it as an eco-system of distributed microservices. In

order to succeed, we needed an effective analysis and implementation

process.

104Go to Table of Contents

storming technique borrowed from the popular Domain Driven Design

(DDD) domain modeling approach. You can find more information on the

technique on its creator’s blog:

http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html.

Based on the collected data, the team provided the implementation team

with complete documentation.

After several workshops, a distributed architecture with dedicated main

areas/services was created with the following key services defined:

• PRICING - managing individual prices and promotions for clients.

• PIM (product information management) - responsible for product

 information and attributes; with planned 1mln+ SKUs it must be

 implemented as a scalable, probably NoSQL based data warehouse.

• WMS (warehouse management system) - product stock management.

• CRM (customer relationship management) - in charge of syncing data

 with Pivotal CRM (orders, statuses, shopping carts …).

• REPORT - reporting and monitoring features.

• NOTIFY - user notifications and alerts management.

• REVIEW - product reviews system.

• RECOMMENDATIONS - recommendations engine.

• FRONTEND APP - in the first version - the good, old Magento1; then

 it was planned to move this layer to a ReactJS + NodeJS thin client.

• MOBILE APP.

We started with a 20 page architecture document and then created a list

of standards for coding each separate service.

105Go to Table of Contents

We tried to leverage the HTTP protocol standards, providing

documentation and technical requirements, such as specific frameworks

and database servers to be used. It’s very important to make use of such

synthetic and consistent standards while dealing with distributed

software.

We decided to start by implementing the first service that is critical for the

system due to its SPoF and which would give us the best performance

results: PRICING and PIM.

It was crucial to figure out how to separate the platform from Pivotal CRM

for calculating end-client product prices and therefore to avoid a SPoF

and maintain High Availability (initially the platform used real-time

WebService calls to get the prices from the CRM when users entered the

page).

PIM was selected to solve problems with growing the SKUs database by

moving to an ElasticSearch NoSQL solution instead of Magento’s EAV

model.

We created these services as separate Symfony3 applications that were

integrated with the Magento1 frontend later on.

Roughly speaking - we just removed the Magento1 modules responsible

for the catalog and wrote our own which called the micro-services instead

of hitting the database.

Then we followed this path further, by rewriting and exchanging

monolithic modules with distributed services one by one.

storming technique borrowed from the popular Domain Driven Design

(DDD) domain modeling approach. You can find more information on the

technique on its creator’s blog:

http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html.

Based on the collected data, the team provided the implementation team

with complete documentation.

After several workshops, a distributed architecture with dedicated main

areas/services was created with the following key services defined:

• PRICING - managing individual prices and promotions for clients.

• PIM (product information management) - responsible for product

 information and attributes; with planned 1mln+ SKUs it must be

 implemented as a scalable, probably NoSQL based data warehouse.

• WMS (warehouse management system) - product stock management.

• CRM (customer relationship management) - in charge of syncing data

 with Pivotal CRM (orders, statuses, shopping carts …).

• REPORT - reporting and monitoring features.

• NOTIFY - user notifications and alerts management.

• REVIEW - product reviews system.

• RECOMMENDATIONS - recommendations engine.

• FRONTEND APP - in the first version - the good, old Magento1; then

 it was planned to move this layer to a ReactJS + NodeJS thin client.

• MOBILE APP.

We started with a 20 page architecture document and then created a list

of standards for coding each separate service.

106Go to Table of Contents

The project was finished with a roughly cut-down Magento (serving only

as an application frontend) and 9 services supporting all the business

logic. One day, if needed, we can simply move on from Magento,

implementing a new frontend using a ReactJS/NodeJS stack or any other

modern tech stack.

Beginning

ERP

ESB

CRM PIM

IT Systems

MAGENTO

WMS

... ...

107Go to Table of Contents

MAGENTO

Step 1

ERP

ESB

CRM PIM

IT Legacy systems

Micro Services

WMS

PRICE

WMS

PIM

...

... ...

The project was finished with a roughly cut-down Magento (serving only

as an application frontend) and 9 services supporting all the business

logic. One day, if needed, we can simply move on from Magento,

implementing a new frontend using a ReactJS/NodeJS stack or any other

modern tech stack.

Beginning

ERP

ESB

CRM PIM

IT Systems

MAGENTO

WMS

... ...

108Go to Table of Contents

Magento Frontend Application Mobile App

Micro Services

M
es

sa
ge

 B
ro

ke
r

PRICE

WMS

PIM

REPORT

CRM

NOTIFY RECOMMENDATION

REVIEW

...

OMS

Step 2

ERP ...

XYZ Client

XY
Z

Cl
ie

nt

PIM

IT Legacy systemsIT Systems

API Gateway

WMS

Fig. 8: Evolutionary (notrevolutionary) steps to create a new platform from a monolithic

application.

109

Each service was designed with its own denormalized database

(ElasticSearch or PerconaDB for relational data orders) and was designed

with high availability in mind. Data between services is exchanged via a

RabbitMQ data bus using an Event Driven Data Management approach4.

We haven’t decided (at this point) to go with any technology other than

PHP, so all services were implemented using the Symfony framework;

mostly for simplicity, as well as cost optimization of the development

process.

You can find more great technologies that focus on microservices later in

this book and at https://github.com/mfornos/awesome-microservices.

To sum-up our challenge please find our notes on the pros and cons of

the microservice approach below:

Pros:

• Small teams can work in parallel to create new, and maintain current,

 services. Many of you have probably experienced problems with working

 in large teams, as we did.

• The possibility of using heterogeneous technologies - ElasticSearch for

 products, PerconaDB for orders.

• Increased critical fault-toleranceby using bulkheads/service contracts.

• Incremental replacement of legacy code and original systems with new,

effective solutions.

4 https://www.nginx.com/blog/event-driven-data-management-microservices/

Magento Frontend Application Mobile App

Micro Services

M
es

sa
ge

 B
ro

ke
r

PRICE

WMS

PIM

REPORT

CRM

NOTIFY RECOMMENDATION

REVIEW

...

OMS

Step 2

ERP ...

XYZ Client

XY
Z

Cl
ie

nt

PIM

IT Legacy systemsIT Systems

API Gateway

WMS

Fig. 8: Evolutionary (notrevolutionary) steps to create a new platform from a monolithic

application.

110Go to Table of Contents

• Scalability - we can scale only the services that require it.

• Programmers have a lot of fun, so it’s quite easy to keep the team

 motivated.

Cons:

• Extensive client involvement is required during the BA phase.

• New skills and quite a lot of architectural experience is required from

 developers and architects to design the initial phases.

• New challenges in maintaining the monitoring of the entire

 infrastructure.

Mobile Commerce

One of the coolest features of the microservices architecture is that you’re

no longer bound to your one-and-only platform. It’s crucial, particularly

when the application at hand has to meet different expectations. In our

case - an eCommerce platform with dental equipment - we have three

different areas to be covered:

• State-of-the-art content management system with e-learning features.

• Basic eCommerce features - checkout and promotions for ordering

 dental equipment. CRM features, user profiles and segmentation for

 tracking all the users.

The platform was designed to work on mobile devices only.

111Go to Table of Contents

At the start we considered whether or not to use one platform for the

backend, or maybe to write dedicated solutions. It’s hard to find software

with enterprise level CMS, PIM, CRM and eCommerce features

altogether.

Therefore we decided to go with the following software products:

• Pimcore - as a CMS and PIM; we created all the content (e-learning,

 static pages, product content) in Pimcore and expose it via API.

• Magento2 - as a checkout and for eCommerce features.

• Dedicated iOS and Android apps for the frontend.

We used the “Backend for Frontends” approach described in this eBook

to provide optimized API gateways for both mobile applications and the

RWD website. Key areas like product content and e-learning pages were

fully manageable in Pimcore and provided the end client with HTML

renderings.

Magento checkout was integrated using API REST calls for placing orders.

Nowadays, all new open source products (and of course, not just

open-source) expose most of their features via API. It’s cool to focus on

the end client’s value (frontend) and not reinvent the wheel on the

backend.

We did almost no custom development work on the backends!

 http://pimcore.org - Enterprise grade Content Management platform, PIM and DAM

5

5

• Scalability - we can scale only the services that require it.

• Programmers have a lot of fun, so it’s quite easy to keep the team

 motivated.

Cons:

• Extensive client involvement is required during the BA phase.

• New skills and quite a lot of architectural experience is required from

 developers and architects to design the initial phases.

• New challenges in maintaining the monitoring of the entire

 infrastructure.

Mobile Commerce

One of the coolest features of the microservices architecture is that you’re

no longer bound to your one-and-only platform. It’s crucial, particularly

when the application at hand has to meet different expectations. In our

case - an eCommerce platform with dental equipment - we have three

different areas to be covered:

• State-of-the-art content management system with e-learning features.

• Basic eCommerce features - checkout and promotions for ordering

 dental equipment. CRM features, user profiles and segmentation for

 tracking all the users.

The platform was designed to work on mobile devices only.

112Go to Table of Contents

Appendix 1: Microservices and unicycling by
Alexander Graf

Thanks to Alexander Graf, the founder of Spryker.com for this part.

Initially published as a blog post on Alexanders’ blog:

https://tech.spryker.com/microservices-and-unicycling-9ed452998b77.

After the unspeakable NoSQL hype of about two years ago had reached

its peak “Why are you still working with relational databases?”, the topic

of microservices was brought to the fore in discussions about back-end

technologies. In addition, with React, Node & Co., the front-enders have

developed quite a unique little game that, it seems, nobody else can see

through. After about two years of Spryker, I have had the pleasure of

being able to follow these technical discussions first-hand. During my

time with the mail order giant Otto Group, there was another quite clearly

defined technical boogeyman — the so-called Host System, or the AS400

machines, which were in use by all the main retailers. Not maintainable,

ancient, full of spaghetti code, everything depended on it, everything

would be better if we could be rid of it and so on and so forth — so I was

told. On the other side were the business clowns — I’m one, too — for

whom technology was just a means to an end. Back then, I thought those

who worked in IT were the real hard workers, pragmatic thinkers, who only

answered to the system and whose main goal was to achieve a high level

of maintainability. Among business people there were, and there still are,

those I thought only busied themselves with absurd strategies and who

banged on about omnichannel, multi-channel, target group shops and

the like. Over the last eight years of Kassenzone.de, these strategies were

always my self-declared final boss. It was my ultimate aim to disprove

them and demonstrate new approaches.

113Go to Table of Contents

To my great disappointment, I have come to realize that people in IT — or

‘developers’ as they are called today — work with the same thought

processes as the business clowns. There is an extremely high tendency to

chase after trends and basic technical problems are not sufficiently

analyzed, nor are they taken seriously enough. Microservices is a

wonderful example of this. It is neither an IT strategy, nor is it an

architecture pattern. At most, it describes just a type of IT and system

organization. Just like omnichannel. Omnichannel doesn’t mean

anything. It’s a cliché that is pretty much just filled with “blurb” and the

same way of thinking is apparent on the topic of microservices. From the

outside, omnichannel can be seen as the result of strong growth if a

company’s range of services can, therefore, cause it to become a leader in

many channels. This is exactly what happens with microservices, which

may be the result of strong growth in IT, because you have to divide large

applications into services so that you don’t have too many developers

working on them at the same time. But this is far cry from being an IT

strategy. In many conversations at the code.talks conference, this

impression was (unfortunately) confirmed. Yoav Kutner (founder of

Magento1) cut his teeth on the rollout of the first of the big Magento1

projects and reports with a shake of the head that developers always

follow the next hype without having considered where the real problem

lies. Yes, I know that that sounds all very general, but let’s have a closer

look at the topic of microservices.

Martin Fowler, IT guru and champion of microservices has written dozens

of articles on the subject and describes microservices as follows:

Appendix 1: Microservices and unicycling by
Alexander Graf

Thanks to Alexander Graf, the founder of Spryker.com for this part.

Initially published as a blog post on Alexanders’ blog:

https://tech.spryker.com/microservices-and-unicycling-9ed452998b77.

After the unspeakable NoSQL hype of about two years ago had reached

its peak “Why are you still working with relational databases?”, the topic

of microservices was brought to the fore in discussions about back-end

technologies. In addition, with React, Node & Co., the front-enders have

developed quite a unique little game that, it seems, nobody else can see

through. After about two years of Spryker, I have had the pleasure of

being able to follow these technical discussions first-hand. During my

time with the mail order giant Otto Group, there was another quite clearly

defined technical boogeyman — the so-called Host System, or the AS400

machines, which were in use by all the main retailers. Not maintainable,

ancient, full of spaghetti code, everything depended on it, everything

would be better if we could be rid of it and so on and so forth — so I was

told. On the other side were the business clowns — I’m one, too — for

whom technology was just a means to an end. Back then, I thought those

who worked in IT were the real hard workers, pragmatic thinkers, who only

answered to the system and whose main goal was to achieve a high level

of maintainability. Among business people there were, and there still are,

those I thought only busied themselves with absurd strategies and who

banged on about omnichannel, multi-channel, target group shops and

the like. Over the last eight years of Kassenzone.de, these strategies were

always my self-declared final boss. It was my ultimate aim to disprove

them and demonstrate new approaches.

114Go to Table of Contents

This does sound quite promising and it can also help with the

corresponding problems. Otto’s IT team has already reached the

Champions League where this is concerned and produced the obligatory

article, called “On Monoliths and Microservices” on the subject. Guido

from Otto also referred to this topic at the code.talks event:

There are also other examples which benefit excellently from this

approach. Zalando is an example of a company which is open about using

it in “From Jimmy to Microservice”. The approach can also crop up for

quickly growing tech teams, such as that of Siroop.

In short, the microservice architectural style is an approach to
developing a single application as a suite of small services,
each running in its own process and communicating with
lightweight mechanisms, often an HTTP resource API. These
services are built around business capabilities and are inde-
pendently deployable by fully automated deployment ma-
chinery. There is a bare minimum of centralized manage-
ment of these services, which may be written in different
programming languages and use different data storage
technologies.

When we began the development of our new Online Shop
otto.de, we chose a distributed, vertical-style architecture at
an early stage of the process. Our experience with our previ-
ous system showed us that a monolithic architecture does
not satisfy the constantly emerging requirements. Growing
volumes of data, increasing loads and the need to scale the
organization, all of these forced us to rethink our approach.

115Go to Table of Contents

Fig. 29: Image: http://martinfowler.com/.

The microservices approach is all about handling a complex
system, but in order to do so the approach introduces its
own set of complexities. When you use microservices you
have to work on automated deployment, monitoring, deal-
ing with failure, eventual consistency, and other factors that a
distributed system introduces. There are well-known ways to
cope with all this, but it’s extra effort, and nobody I know in
software development seems to have acres of free time. So
my primary guideline would be don’t even consider micros-
ervices unless you have a system that’s too complex to
manage as a monolith.

What’s often forgotten when people sing its praises are the costs

associated with such an approach. Martin Fowler calls these costs the

Microservice Premium and clearly warns against proceeding in this

direction without caution:

This does sound quite promising and it can also help with the

corresponding problems. Otto’s IT team has already reached the

Champions League where this is concerned and produced the obligatory

article, called “On Monoliths and Microservices” on the subject. Guido

from Otto also referred to this topic at the code.talks event:

There are also other examples which benefit excellently from this

approach. Zalando is an example of a company which is open about using

it in “From Jimmy to Microservice”. The approach can also crop up for

quickly growing tech teams, such as that of Siroop.

In short, the microservice architectural style is an approach to
developing a single application as a suite of small services,
each running in its own process and communicating with
lightweight mechanisms, often an HTTP resource API. These
services are built around business capabilities and are inde-
pendently deployable by fully automated deployment ma-
chinery. There is a bare minimum of centralized manage-
ment of these services, which may be written in different
programming languages and use different data storage
technologies.

When we began the development of our new Online Shop
otto.de, we chose a distributed, vertical-style architecture at
an early stage of the process. Our experience with our previ-
ous system showed us that a monolithic architecture does
not satisfy the constantly emerging requirements. Growing
volumes of data, increasing loads and the need to scale the
organization, all of these forced us to rethink our approach.

116Go to Table of Contents

Technically speaking, this restriction has many different origins. Whether

it’s the latencies which must be called up for one procedure due to dozens

of active services, clearly difficult debugging, the demanding hardware

setup or the complex data retention (each service has its own database).

The fundamentally hard to manage technology zoo notwithstanding.

Here, excellent parallels to eCommerce organizations can be drawn. Who

is quicker and more effective in the development and scaling of new

models:

1. a company with dozens of departments and directorates, which must

be in a permanent state of agreement, but which are extremely good in

each of their individual disciplines;

2. or a company at which up to 100 employees sit in one room, all

knowing what’s going on and all talking to each other.

The second example is quicker, that goes without saying. With larger

models, at which scaling is a rather uniform approach, the first example is

better. Not much is different in the case of microservices. To understand

this context better, Werner Vogels’ (Amazon CTO) test on his Learnings

with AWS30 is highly recommended:

We needed to build systems that embrace failure as a natu-
ral occurrence even if we did not know what the failure
might be. Systems need to keep running even if the “house
is on fire.” It is important to be able to manage pieces that
are impacted without the need to take the overall system
down. We’ve developed the fundamental skill of managing
the “blast radius” of a failure occurrence such that the overall
health of the system can be maintained.

30https://www.thoughtworks.com/insights/blog/monoliths-are-bad-design-and-you-know-it

117

³¹https://www.thoughtworks.com/insights/blog/monoliths-are-bad-design-and-you-know-it

³²http://blog.cleancoder.com/uncle-bob/2014/10/01/CleanMicroserviceArchitecture.html

Although there are, therefore, really good guidelines for sufficient

handling of the topic, so as to find out whether microservices make sense

for an IT organization (not for most!), you can regularly find contributions

such as that by Sam Gibson³¹ online or on conference panels:

In Kassenzone reader’s language, this pretty much means: Pure Play

business models are good if they are implemented in an orderly fashion

but it will only really come good if you run many channels well. The

winning strategy is omnichannel. Now, you could simply brush such

statements off, but it is astounding just how quickly and strongly such

simple thought processes spread and become the truth all by themselves.

The voices which oppose them32 are quiet in comparison, but the

arguments are quite conclusive.

In principle, it is possible to create independent modules
within a single monolithic application. In practice, this is
seldom implemented. Code within the monolith most often,
and quickly, becomes tightly coupled. Microservices, in con-
trast, encourage architects and developers the opportunity
to develop less coupled systems that can be changed faster
and scaled more effectively.

In principle, it is possible to create independent modules
within a single monolithic application. In practice, this is
seldom implemented. Code within the monolith most often,
and quickly, becomes tightly coupled. Microservices, in con-
trast, encourage architects and developers the opportunity
to develop less coupled systems that can be changed faster
and scaled more effectively.

Technically speaking, this restriction has many different origins. Whether

it’s the latencies which must be called up for one procedure due to dozens

of active services, clearly difficult debugging, the demanding hardware

setup or the complex data retention (each service has its own database).

The fundamentally hard to manage technology zoo notwithstanding.

Here, excellent parallels to eCommerce organizations can be drawn. Who

is quicker and more effective in the development and scaling of new

models:

1. a company with dozens of departments and directorates, which must

be in a permanent state of agreement, but which are extremely good in

each of their individual disciplines;

2. or a company at which up to 100 employees sit in one room, all

knowing what’s going on and all talking to each other.

The second example is quicker, that goes without saying. With larger

models, at which scaling is a rather uniform approach, the first example is

better. Not much is different in the case of microservices. To understand

this context better, Werner Vogels’ (Amazon CTO) test on his Learnings

with AWS30 is highly recommended:

We needed to build systems that embrace failure as a natu-
ral occurrence even if we did not know what the failure
might be. Systems need to keep running even if the “house
is on fire.” It is important to be able to manage pieces that
are impacted without the need to take the overall system
down. We’ve developed the fundamental skill of managing
the “blast radius” of a failure occurrence such that the overall
health of the system can be maintained.

30https://www.thoughtworks.com/insights/blog/monoliths-are-bad-design-and-you-know-it

118Go to Table of Contents

There are plenty of websites, blogs and books you can check to read

more about microservices and related architectural patterns. The book

“Building Microservices, Designing Fine-Grained Systems” by Sam

Newman and O’Reilly Media

(http://shop.oreilly.com/product/0636920033158.do) should be at the

top of the top of your list. The most important information has been

collected into one place. It is all you need to know to model, implement,

test and run new systems using microservices or transform the monolith

into a distributed set of smaller applications. A must-have book for every

software architect. O’Reilly Media has also released another interesting

book, “Microservice Architecture” by Irakli Nadareishvili, Ronnie Mitra,

Matt McLarty and Mike Amundsen

(http://shop.oreilly.com/product/0636920050308.do), which is also worth

a read.

With knowledge from Sam Newman, you should be ready to discover

websites like:

• http://microservices.io,

• https://github.com/mfornos/awesome-microservices,

• and https://dzone.com/ (under „microservices” keyword), curated lists

of articles.

It’s a condensed dose of knowledge about core microservice patterns,

decomposition methods, deployment patterns, communication styles,

data management and many more… There you can also find many

interesting presentations and talks recorded at conferences. The last

website specifically, https://dzone.com/, should be very interesting for IT

people.

Appendix 3: Blogs and resources

³³ https://m.signalvnoise.com/the-majestic-monolith-29166d022228#.90yg49e3j

Technically and methodically, a lot is said for the use of “good”

monolithic structures for a great deal of eCommerce companies, but

doing so requires a lot of effort producing good code, something which,

in the short term, you don’t have to do in the microservices world. If, then,

a mistake in the scaling arises, the affected CTOs would probably wish

they had the AS400 system back.

The founder of Basecamp has hit the nail on the head with his own

system, which he describes as “The Majestic Monolith”33. And, where

content is concerned, I’m with him:

It’s bit like if companies who own an old bicycle, which they don’t know

how to ride properly, want a little too much. They see the unicyclist at the

circus performing dazzling tricks on his unicycle and say to themselves:

My bike is too old, that’s why I can’t ride it. I’ll just start with a unicycle

right away, at least that’s forward-thinking.

Where things go astray is when people look at, say, Amazon
or Google or whoever else might be commanding a fleet of
services, and think, hey it works for The Most Successful, I’m
sure it’ll work for me too. Bzzzzzzzz!! Wrong! The patterns
that make sense for organizations’ orders of magnitude
larger than yours, are often the exact opposite ones that’ll
make sense for you. It’s the essence of cargo culting. If I
dance like these behemoths, surely I too will grow into one.
I’m sorry, but that’s just not how the tango goes.

119Go to Table of Contents

There are plenty of websites, blogs and books you can check to read

more about microservices and related architectural patterns. The book

“Building Microservices, Designing Fine-Grained Systems” by Sam

Newman and O’Reilly Media

(http://shop.oreilly.com/product/0636920033158.do) should be at the

top of the top of your list. The most important information has been

collected into one place. It is all you need to know to model, implement,

test and run new systems using microservices or transform the monolith

into a distributed set of smaller applications. A must-have book for every

software architect. O’Reilly Media has also released another interesting

book, “Microservice Architecture” by Irakli Nadareishvili, Ronnie Mitra,

Matt McLarty and Mike Amundsen

(http://shop.oreilly.com/product/0636920050308.do), which is also worth

a read.

With knowledge from Sam Newman, you should be ready to discover

websites like:

• http://microservices.io,

• https://github.com/mfornos/awesome-microservices,

• and https://dzone.com/ (under „microservices” keyword), curated lists

of articles.

It’s a condensed dose of knowledge about core microservice patterns,

decomposition methods, deployment patterns, communication styles,

data management and many more… There you can also find many

interesting presentations and talks recorded at conferences. The last

website specifically, https://dzone.com/, should be very interesting for IT

people.

Appendix 3: Blogs and resources

³³ https://m.signalvnoise.com/the-majestic-monolith-29166d022228#.90yg49e3j

Technically and methodically, a lot is said for the use of “good”

monolithic structures for a great deal of eCommerce companies, but

doing so requires a lot of effort producing good code, something which,

in the short term, you don’t have to do in the microservices world. If, then,

a mistake in the scaling arises, the affected CTOs would probably wish

they had the AS400 system back.

The founder of Basecamp has hit the nail on the head with his own

system, which he describes as “The Majestic Monolith”33. And, where

content is concerned, I’m with him:

It’s bit like if companies who own an old bicycle, which they don’t know

how to ride properly, want a little too much. They see the unicyclist at the

circus performing dazzling tricks on his unicycle and say to themselves:

My bike is too old, that’s why I can’t ride it. I’ll just start with a unicycle

right away, at least that’s forward-thinking.

Where things go astray is when people look at, say, Amazon
or Google or whoever else might be commanding a fleet of
services, and think, hey it works for The Most Successful, I’m
sure it’ll work for me too. Bzzzzzzzz!! Wrong! The patterns
that make sense for organizations’ orders of magnitude
larger than yours, are often the exact opposite ones that’ll
make sense for you. It’s the essence of cargo culting. If I
dance like these behemoths, surely I too will grow into one.
I’m sorry, but that’s just not how the tango goes.

120Go to Table of Contents

Depending on your time, you can subscribe to the newsletter

“Microservices Weekly” (http://www.microservicesweekly.com) for a

weekly set of articles about architecture and container-based virtualization

or visit the Microservices section at the InfoQ website

(https://www.infoq.com/microservices/), one of the most important

websites with articles and talks related to software development.

As you can see, knowledge is all around us. Don’t forget about Martin

Fowler and his “Microservice Resource Guide”

(https://martinfowler.com/microservices/). Martin is Chief Scientist at

ToughtWorks, the publisher of “Technology Radar”

(https://www.thoughtworks.com/radar; highly recommended as well) and

author of a few bestselling books. Martin Fowler’s wiki is a Mecca for

software architects and “Microservice Resource Guide” is only one of

them…

121Go to Table of Contents

Depending on your time, you can subscribe to the newsletter

“Microservices Weekly” (http://www.microservicesweekly.com) for a

weekly set of articles about architecture and container-based virtualization

or visit the Microservices section at the InfoQ website

(https://www.infoq.com/microservices/), one of the most important

websites with articles and talks related to software development.

As you can see, knowledge is all around us. Don’t forget about Martin

Fowler and his “Microservice Resource Guide”

(https://martinfowler.com/microservices/). Martin is Chief Scientist at

ToughtWorks, the publisher of “Technology Radar”

(https://www.thoughtworks.com/radar; highly recommended as well) and

author of a few bestselling books. Martin Fowler’s wiki is a Mecca for

software architects and “Microservice Resource Guide” is only one of

them…

Thank you!

If you want to know more

about microservices, just

drop me a message at

pkarwatka@divante.co.

www.divante.co

122Go to Table of Contents

Try Our Solution

http://openloyalty.io

